• Title/Summary/Keyword: Ag pastes

Search Result 46, Processing Time 0.022 seconds

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

Magnetic Properties of Chip Inductors Prepared with V2O5-doped Ferrite Pastes (V2O5 도핑한 페라이트 페이스트로 제조된 칩인덕터의 자기적 특성)

  • Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • The purpose of this study Is to investigate the effect of $V_2$O$_{5}$ addition on the microstructures and magnetic properties of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2O_{5}$-doped NiCuZn ferrite pastes. With increasing the $V_2O_{5}$ content, the exaggerated grain growth of ferrite layers was developed due to the promotion of Ag diffusion and Cu segregation into the grain boundaries oi ferrites, which affected significantly the magnetic properties of the chip inductors. After sintering at $900^{\circ}C$, the inductance at 10 MHZ of the 0.5 wt% $V_2O_{5}$-doped chip inductor was 3.7 ${\mu}$H less than 4.2 ${\mu}$H of the 0.3 wt% $V_2O_{5}$-doped one, which was thought to be caused by the residual stress at the ferrite layers increased with the promotion of Ag diffusion and Cu segregation. The quality factor of the 0.5 wt% $V_2O_{5}$-doped chip inductor decreased with increasing the sintering temperature, which was considered to be caused by the electrical resistivity of the ferrite layer decreased with the promotion of Ag/cu segregation at the grain boundaries and the growth of the mean grain size of ferrite due to exaggerated grain growth of ferrite layers.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application (실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성)

  • Kim, Gi-Dong;Nam, Hyun-Min;Yang, Sangsun;Park, Lee-Soon;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.

Printing Properties of Ag Paste with the Variation of Binder on the SiNx Coated Si Wafer (SiNx 층이 코팅된 Si Wafer에 바인더 종류에 따른 Ag 페이스트의 인쇄 특성)

  • Kang, Jea Won;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • Ag paste has been used in the front electrode of the Si-solar cell. It is composed by Ag powder, glass frit, binder, solvent and dispersant. The role of the binder and the solvent is to make a flow and a printing property. However, it was not enough to report the printing properties with the variation of binder in the controled viscosity. In this study, we selected 3 kinds of typical binder which were used as binder for the paste in the industry, such as Ethyl cellulose, Hydroxypropyl cellulose and Acrylic. Ag pastes using these were prepared, controled viscosity and printed on the SiNx coated Si wafer. In the 'A paste' used Acrylic binder, printed hight was highest and 'H paste' used Hydroxypropyl cellulose binder was lowest. Because 'H paste' was high viscosity due to the molecular weight, the solvent was added in the paste to control the viscosity. Therefore, the content of solid was lower in 'H paste'. The relative pattern width which is related to the spreading of paste was the best in the case of 'H paste' and 'EH paste' at $30^{\circ}C$. It is thought that the optimization of the relative pattern width is possible for a paste by the controling shear thinning phenomenon. In the case of 'A paste', though printing hight was best, the pattern width was dependant on the temperature.

Effects of Flux Activator on Wettability and Slump of Sn-Ag-Cu Solder Paste (플럭스 활성제 종류에 따른 Sn-Ag-Cu 솔더 페이스트의 젖음성 및 슬럼프 특성 평가)

  • Kwon, Soonyong;Seo, Wonil;Ko, Yong-Ho;Lee, Hoo-Jeong;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2018
  • Effect of activators in flux on the printability and wettability of a solder paste was evaluated in this study. The activators in this study were dicarboxylic acids, which were oxalic acid (n = 0), malonic acid (n = 1), succinic acid (n = 2), glutaric acid (n = 3), adipic acid (n = 4), and pimelic acid (n = 5). When the solder pastes were observed with a SMT scope, solder with glutaric acid showed clean and shiny surface when it was melted. Slump ratio of the solder pastes was low when the carbon numbers of the dicarboxylic acid were 1-3. Spreadability was high when the carbon number was over 2. Zero cross time of wetting balance test was under 1 sec when the carbon number was over 3. When activator was oxalic acid or malonic acid, zero cross time was over 1 sec and maximum wetting force was low. Fluxes with the oxalic acid and malonic acid showed decomposition at the temperature close to melting point. Among the dicarboxylic acids, glutaric acid provided excellent slump, spreadability, and wettability.

Drying Characteristics of Conductive Thin Films (전도성 잉크 박막의 건조특성)

  • Yoon, Seong Man;Jo, Jeongdai;Kim, Kwang Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.505-511
    • /
    • 2014
  • In this paper, silver pastes were printed on polyethylene terephthalate (PET) film using screen printing and evaluated the drying characteristics by using dry oven and NIR drying system. The printed Ag films were dried at $140^{\circ}C$ and the drying time was changed from 10 to 90 seconds. To evaluate the electrical properties of printed Ag film, sheet resistance was compared. The sheet resistance of the dried thin silver film by using NIR drying system more rapidly decreased. To clarify this phenomena, the morphology and component of the dried surfaces were measured by using the scanning electron microscope (SEM) and the energy dispersive X-ray Spectroscopy (EDX), respectively. In the EDX measurement results, the oxidation of the surface was observed in the dried thin film by using the dry oven. The NIR drying system is more applicable than conventional hot air drying to apply continuous printing system.

Fabrication and Characterization of Silver-Coated Titanium Dioxide Nanoparticles for a Conductive Paste (은이 코팅된 이산화티탄 나노입자 및 도전성 페이스트 제조 특성)

  • Sim, Sang-Bo;Lee, Mi Chae;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.683-689
    • /
    • 2015
  • In this study, the properties of Ag-coated $TiO_2$ nanoparticles were observed, while varying the molar ratio of water and $Ag^+$ for the surfactant and $TiO_2$. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1($R_1=5$)(33.3 nm), AT2($R_1=10$)(38.1 nm), AT3($R_1=20$)(45.7 nm), AT4($R_1=40$)(48.6 nm) as well as AT5($R_2=0.2$, $R_3=0.5$)(41.4 nm), AT6($R_2=0.3$, $R_3=1$)(45.1 nm), AT7($R_2=0.5$, $R_3=1.5$)(49.3 nm), AT8($R_2=0.7$, $R_3=2$)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated $TiO_2$ nanoparticles exhibited a range 7.0~9.0($274{\sim}328{\mu}{\Omega}/cm^2$) times that of pure silver paste(ATP)($52{\mu}{\Omega}/cm^2$).

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.