DOI QR코드

DOI QR Code

Fabrication and Characterization of Silver-Coated Titanium Dioxide Nanoparticles for a Conductive Paste

은이 코팅된 이산화티탄 나노입자 및 도전성 페이스트 제조 특성

  • Sim, Sang-Bo (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Lee, Mi Chae (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
  • 심상보 (국립창원대학교 메카트로닉스대학 나노신소재공학부) ;
  • 이미재 (한국세라믹 기술원 광학 디스플레이이 팀) ;
  • 배동식 (국립창원대학교 메카트로닉스대학 나노신소재공학부)
  • Received : 2015.10.12
  • Accepted : 2015.10.24
  • Published : 2015.12.27

Abstract

In this study, the properties of Ag-coated $TiO_2$ nanoparticles were observed, while varying the molar ratio of water and $Ag^+$ for the surfactant and $TiO_2$. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1($R_1=5$)(33.3 nm), AT2($R_1=10$)(38.1 nm), AT3($R_1=20$)(45.7 nm), AT4($R_1=40$)(48.6 nm) as well as AT5($R_2=0.2$, $R_3=0.5$)(41.4 nm), AT6($R_2=0.3$, $R_3=1$)(45.1 nm), AT7($R_2=0.5$, $R_3=1.5$)(49.3 nm), AT8($R_2=0.7$, $R_3=2$)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated $TiO_2$ nanoparticles exhibited a range 7.0~9.0($274{\sim}328{\mu}{\Omega}/cm^2$) times that of pure silver paste(ATP)($52{\mu}{\Omega}/cm^2$).

Keywords

References

  1. L. Mai, D. Wang, S. Zhang, Y. J. Xie and C. M. Huang, Appl. Surf. Sci., 257, 974 (2010). https://doi.org/10.1016/j.apsusc.2010.08.003
  2. W. Su, S. S. Wei, S. Q. Hu and J. X. Tang, J. Hazard. Mater., 172, 716 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.056
  3. Y.-J. Kim, Z. Li, D.-H. Kim, D.-W. Lee and J.-H. Ahn J. Ceram. Process. Res., 10, 216 (2009).
  4. J.-H. Jin, M.-C. Chu, S.-J. Cho and D.-S. Bae, Trans. Nonferrous Met. Soc., 19, 96 (2009). https://doi.org/10.1016/S1003-6326(10)60253-1
  5. H.-R. Park, S.-W. Lee and I.-S. Yoo, Appl. Chem. Eng., 23, 293(2012).
  6. N. Y. Jamil, S. A. Najim, A. M. Muhammed and V. M. Rogoz, Proc. Int. Conference, 3, 3 (2014).
  7. S. Gayathri and S. Sathishkumar, Appl. Sci. Lett., 1, 8 (2015).
  8. X. Yang, L. Xu, X. Yu and Y. Guo, Catal. Commun., 9, 1124 (2008).
  9. H. Zhang and G. Chen, Environ. Sci. Technol., 43, 2905 (2009). https://doi.org/10.1021/es803450f
  10. H. E. Chao, Y. U. Yun, H. U. Xingfang and A. Larbot, J. Eur. Ceram. Soc., 23, 1457 (2003). https://doi.org/10.1016/S0955-2219(02)00356-4
  11. O. Akhavan, J. Colloid Interface Sci., 336, 117 (2009). https://doi.org/10.1016/j.jcis.2009.03.018
  12. U. G. Akpan and B. H. Hameed, Appl. Catal., 375, 1 (2010). https://doi.org/10.1016/j.apcata.2009.12.023
  13. Y. Yonezawa, N. Kometani, T. Sakaue and A. Yano, J. Photochem. Photobiol., 171, 1 (2005). https://doi.org/10.1016/j.jphotochem.2004.08.020
  14. M. Boutonnet, J. Kizling and P. Stenius, Colloids Surf., 5, 209 (1982). https://doi.org/10.1016/0166-6622(82)80079-6
  15. M. Andersson and J. S. Pedersen, Langmuir., 21, 11387 (2005). https://doi.org/10.1021/la050937j
  16. R. P. Bagwe and K. C. Khilar, Langmuir., 6, 905 (2000).
  17. Boutonnet, J. Kizling, P. Stenius, Colloids Surf., 5, 209 (1982). https://doi.org/10.1016/0166-6622(82)80079-6
  18. N. Castillo, L. D. Barriga, R. Perez and M. J. Martinez- Ortiz, Rev. Adv. Mater. Sci., 18, 72 (2008).
  19. D. Chen, S. Liu, N. Zhao and J. Sheng, J. Alloys Compd., 475, 494 (2009). https://doi.org/10.1016/j.jallcom.2008.07.115
  20. C. L. Chiang, M. B. Hsu and L. B. Lai, J. Solid State Chem., 177, 3891 (2004). https://doi.org/10.1016/j.jssc.2004.07.003
  21. X. Fu, S. Qutubuddin, Colloid Surface Physicochem. Eng. Aspect., 179, 65 (2001). https://doi.org/10.1016/S0927-7757(00)00723-8
  22. S. S. Hong, M. Sig Lee and G. D. Lee, Kinet. Catal. Lett., 80, 145 (2003). https://doi.org/10.1023/A:1026096628817
  23. F. Ghanbary and A. Jafarian, J. Basic Appl. Sci., 5, 2889 (2011).
  24. M. A. Lopez-Quintela, Curr. Opin. Coll. Int. Sci., 8, 137(2003). https://doi.org/10.1016/S1359-0294(03)00019-0
  25. J.-K. Han, H.-C. Kim and W.-S. Hong, Korean J. Mater. Res. 18, 7 (2008).
  26. M. M. Husein and N. N. Nassar, Curr. Nanoscience., 4, 370 (2008). https://doi.org/10.2174/157341308786306116
  27. S. Bagheri1, D. Ramimoghadam, A. T. Yousefi, Int. J. Electrochem. Sci., 10, 3088 (2015).
  28. D. B. Zhang and H. M. Cheng, J. Mater. Sci. Lett., 20, 439 (2001). https://doi.org/10.1023/A:1010906615079
  29. A. Alistan-Grijalva and R. Herrera-Urbina, Mater. Res. Bull., 43, 90 (2008). https://doi.org/10.1016/j.materresbull.2007.02.013
  30. A. Alistan-Grijalva and R. Herrera-Urbina, Physica. E. 25, 438 (2005). https://doi.org/10.1016/j.physe.2004.07.010
  31. O. A. Yeshchenko, I. M. dmitruk and A. A. Alexeenko, Ukr. J. Phys. 57, 2 (2012).
  32. C. F. Bohren and D. R. Huffman, John Wiley & Sons, Inc., New York, (1988).