• 제목/요약/키워드: Ag nano wire

검색결과 17건 처리시간 0.024초

수열흡착법을 이용한 은 점코팅된 구리 나노분말의 합성과 미세조직 (Microstructure and Synthesis of Ag Spot-coated Cu Nanopowders by Hydrothermal-attachment Method using Ag Colloid)

  • 김형철;한재길
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.546-551
    • /
    • 2011
  • Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.

동도금한 은선재의 전기선폭발에 의해 제조한 Ag-Cu분말 (Ag-Cu Powders Prepared by Electrical Wire Explosion of Cu-plated Ag Wires)

  • 김원백;박제신;서창열
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.320-326
    • /
    • 2007
  • Ag-Cu alloy nano powders were fabricated by the electrical explosion of Cu-plated Ag wires. Ag wires of 0.2mm diameter was electroplated to final diameter of 0.220 mm and 0.307 mm which correspond to Ag-27Cu and Ag-68Cu alloy. The explosion product consisted of equilibrium phases of ${\alpha}-Ag$ and ${\beta}$-Cu. The particle size of Ag-Cu nano powders were 44 nm and 70 nm for 0.220 mm and 0.307 mm wires, respectively. The Ag-Cu nano powders contained less Cu than average value due to higher sublimation energy compared to that of Ag. As a result, micron-sized spherical particles formed from liquid droplets contained higher Cu content.

Insulated, Passivated and Adhesively-Promoted Bonding Wire using Al2O3 Nano Coating

  • Soojae Park;Eunmin Cho;Myoungsik Baek;Eulgi Min;Kyujung Choi
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Bonding wires are composed of conductive metals of Au, Ag & Cu with excellent electrical conductivities for transmitting power and signals to wafer chips. Wire metals do not provide electrical insulation, adhesion promoter and corrosion passivation. Adhesion between metal wires is extremely weak, which is responsible for wire cut failures during thermal cycling. Organic coating for electrical insulation does not satisfy bondability and manufacturability, and it is complex to apply very thin organic coating on metal wires. Automotive packages require enhanced reliability of packages under harsh conditions. LED and power packages are susceptible to wire cut failures. Contrary to conventional OCB behaviors, forming gas was not required for free air ball formation for both Ag and Pd-coated Cu wires with Al2O3 passivation.

전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성 (Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions)

  • 전수형;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구 (A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell)

  • 최정호;노시철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술 (Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics)

  • 김대곤;김영민;김종웅
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.

Ag nano-wire arrays의 제작에 관한 연구 (A study for the fabrication of Ag nano-wire arrays)

  • 정경한;신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.161-163
    • /
    • 2002
  • Siver nanowires have been obtained by electrodepositon in the porous anodic alumina that plays a role as a template in the constant current mode using DC power supply. The diameter and the length of the silver nanowires are about 55 nm and 13 ${\mu}m$ corresponding to them of the template respectively. The aspect ratio of the silver nanowires is more or less 200. The rate of the filling of the alumina pores is approximately 10%.

  • PDF

질소가스흡착법을 이용한 금속 나노분말의 프랙탈 차원 결정 및 표면 특성 평가 (Determination of Fractal Dimension and Surface Characterization of Metal Nano-powder Using Nitrogen Gas Adsorption Method)

  • 이경자;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.391-398
    • /
    • 2007
  • The surface roughness of Al, Ag and Ni nano-powders which were prepared by pulsed wire evaporation method was quantified based upon the fractal theory. The surface fractal dimensions of metal nano-powders were determined from the linear relationship between In $V/V_{mono}$ and Inln ($P^o/P$) using multi-layer gas adsorption theory. Moreover, the fractal surface image was realized by computer simulation. The relationship between preparation condition and surface characteristics of metal nano-powders was discussed in detail.

Development of Transparent Conductive Patterned Film with Hybrid Ag Ink

  • 최주환;백수진;이범주;신진국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.2.3-2.3
    • /
    • 2011
  • With increased interest in printed devices, various metal nano inks have been investigated as candidates materials for printed electrodes and wiring as well as conductive film substituting photo-lithography process. Recent advances in organic conductive polymer allow us to fabricate high performance printed device. Meanwhile, there was several attempts to fabricate conductive films by mixing conductive polymer with metal nano-particle or nano-wires. The presence of Ag nanowires in conductive polymer mixture have shown good potential in organic photovoltaic devices.

  • PDF

다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구 (Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell)

  • 김명현;송재원;남윤호;김동형;유시영;문환균;유봉영;이정호
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.