• 제목/요약/키워드: Aerosol types

검색결과 89건 처리시간 0.021초

DMA를 이용한 나노 입자의 크기 분류법에 대한 이해와 성능개선 (Understanding Size Selection of Nanoparticles Using a Differential Mobility Analyzer (DMA) and Its Performance Enhancement)

  • 김석환;김상욱;이동근
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.33-43
    • /
    • 2014
  • A differential mobility analyzer (DMA) has been widely used as a standard tool for classifying nanoparticles with a certain size. More recently, several new types of DMA have been tested in an attempt to produce size-monodisperse nanoparticles. It is a bit surprise to see how simple the working theory of the DMA is. Although the theory was demonstrated quite successful, no one can guarantee whether the theory still works in another geometry of the DMA. In this regard, we first investigated the validity of the theory under various working conditions and then moved to check the validity upon minor change in its design. For the valid test, we compared the results with those obtained from a computational fluid dynamics.

조리과정에서 생성된 미세먼지의 크기분포 특성 (Size Distribution Characteristics of Particulate Matter Emitted from Cooking)

  • 주상우;지준호
    • 한국입자에어로졸학회지
    • /
    • 제16권1호
    • /
    • pp.9-17
    • /
    • 2020
  • The characteristics of particulate matter made from daily cooking at a Korean residential apartment house with three dwellers had been investigated for about 3 months. All data were recorded by an optical particle counter every minute at the kitchen. Types of cooking such as boiling, frying, and grilling that performed in the house were listed. Boiling only was used in 32% cases among total 234 meals. Frying and grilling were 14% and 11%, respectively. From an initial indoor particulate matter smaller than 10 ㎛ in diameter, the increases due to cooking are reported by size. In case of boiling, PM at 1-10 ㎛ size and under 1 ㎛ size little increased. Normally, particles from oil or combustion in a process of frying or grilling increased indoor PM. In a case of grilling, particle mass concentration in a region of 1-10 ㎛ in diameter increased as much as 295 ㎍/㎥. Mass concentration of particles smaller than 1 ㎛ increased as much as 33 ㎍/㎥.

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk;Park, Seung-Shik
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권2호
    • /
    • pp.95-104
    • /
    • 2013
  • The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권2호
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.

GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구 (Determination of the Lidar Ratio Using the GIST / ADEMRC Multi-wavelength Raman Lidar System at Anmyeon Island)

  • 노영민;김영민;김영준;최병철
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.1-14
    • /
    • 2006
  • Tropospheric aerosols are highly variant in time and space due to non-uniform source distribution and strong influence of meteorological conditions. Backscatter lidar measurement is useful to understand vertical distribution of aerosol. However, the backscatter lidar equation is undetermined due to its dependence on the two unknowns, extinction and backscattering coefficient. This dependence necessitates the exact value of the ratio between two parameters, that is, the lidar ratio. Also, Iidar ratio itself is useful optical parameter to understand properties of aerosols. Tropospheric aerosols were observed to understand variance of lidar ratio at Anmyeon island ($36.32^{/circ}N$, $126.19^{/circ}E$), Korea using a multi-wavelength raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea during measurement periods; March 15$\sim$April $16^{th}$, 2004 and May 24$\sim$ $8^{th}$ 2005. Extinction coefficient, backscattering coefficient, and lidar ratio were measured at 355 and 532 nm by the Raman method. Different types of aerosol layers were distinguished by the differences in the optical properties such as Angstrom exponent, and lidar ratio. The average value of lidar ratio during two observation periods was found to be $50.85\pm4.88$ sr at 355 nm and $52.43\pm15.15$ sr at 532 nm at 2004 and $57.94\pm10.29$ sr at 355 nm and $82.24\pm15.90$ sr at 532 nm at 2005. We conduct hysplit back-trajectory to know the pathway of airmass during the observation periods. We also calculate lidar ratio of different type of aerosol, urban, maritime, dust, continental aerosols using OPAC (Optical Properties of Aerosols and Clouds), Remote sensing of atmospheric aerosol using a multi-wavelengh lidar system with Raman channels is quite and powerful tool to characterize the optical propertises of troposheric aerosols.

BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구 (A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS)

  • 송종순;이학윤;김선일
    • 방사성폐기물학회지
    • /
    • 제16권4호
    • /
    • pp.473-478
    • /
    • 2018
  • 원전 해체 공정 중 절단 및 용융작업에서 발생되는 방사성 에어로졸은 작업종사자의 호흡을 통해 내부 피폭을 유발하게 된다. 이에 따라 해체 중 방사성 에어로졸로 인한 작업종사자의 내부피폭 평가가 필요한 실정이다. 정확한 내부피폭평가를 위해서는 작업종사자의 작업환경 실측값이 필요하지만 실측에 어려움이 있을 시에는 국제방사선방호위원회(ICRP)에서 제시하는 섭취량 분율 및 입자 크기 등의 권고 값을 통해 내부피폭선량을 추정할 수 있다. 본 논문에서는 입자 크기의 선정은 ICRP에서 권고하는 작업종사자의 고려 입자 크기인 $5{\mu}m$을 적용하였다. 발생량의 경우, 불가리아의 Kozloduy 부지 내의 용융시설에서 발생 된 에어로졸의 포집량 데이터를 이용하여 섭취량을 산정하였다. 또한 이를 이용해 작업종사자의 체내 및 배설물에서의 방사능 수치를 계산하고 BiDAS 전산코드를 통해 내부피폭 평가를 수행하였다. Type M이 0.0341 mSv, Type S가 0.0909 mSv로 두 흡수 형태 각각 국내 연간 선량 한도의 0.17%, 0.45% 수준을 나타내었다.

Effects of Spray Surfactant and Particle Charge on Respirable Coal Dust Capture

  • Tessum, Mei W.;Raynor, Peter C.
    • Safety and Health at Work
    • /
    • 제8권3호
    • /
    • pp.296-305
    • /
    • 2017
  • Background: Surfactant-containing water sprays are commonly used in coal mines to collect dust. This study investigates the dust collection performance of different surfactant types for a range of coal dust particle sizes and charges. Methods: Bituminous coal dust aerosol was generated in a wind tunnel. The charge of the aerosol was either left unaltered, charge-neutralized with a neutralizer, or positively- or negatively-charged using a diffusion charger after the particles were neutralized. An anionic, cationic, or nonionic surfactant spray or a plain water spray was used to remove the particles from the air flow. Some particles were captured while passing through spray section, whereas remaining particles were charge-separated using an electrostatic classifier. Particle size and concentration of the charge-separated particles were measured using an aerodynamic particle sizer. Measurements were made with the spray on and off to calculate overall collection efficiencies (integrated across all charge levels) and efficiencies of particles with specific charge levels. Results: The diameter of the tested coal dust aerosol was $0.89{\mu}m{\pm}1.45$ [geometric $mean{\pm}geometric$ standard deviations (SD)]. Respirable particle mass was collected with $75.5{\pm}5.9%$ ($mean{\pm}SD$) efficiency overall. Collection efficiency was correlated with particle size. Surfactant type significantly impacted collection efficiency: charged particle collection by nonionic surfactant sprays was greater than or equal to collection by other sprays, especially for weakly-charged aerosols. Particle charge strength was significantly correlated with collection efficiency. Conclusion: Surfactant type affects charged particle spray collection efficiency. Nonionic surfactant sprays performed well in coal dust capture in many of the tested conditions.

AERONET 선포토미터 자료를 이용한 국내 에어로졸 유형별 특성과 광학적 두께 변화 연구 (A Study on the Characteristic and AOD Variation according to Aerosol Types Using AERONET Sunphotometer Data in Korea)

  • 주소희;;노영민
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.93-101
    • /
    • 2020
  • 본 연구는 국내 최초로 안면도, 고산, 광주, 서울에서 측정된 AERONET 선포토미터 자료를 편광소멸도(δ)와 단산란 알베도(SSA)를 이용하여 에어로졸의 유형을 PD, DDM, PDM, NA, WA, MA, SA의 7가지 유형으로 구분하고 계절별, 연도별 발생빈도와 유형별 AOD변화를 살펴보았다. 오염입자(NA, WA, MA, SA를 합한 비율)의 비율은 각각 58.9, 46.2, 59.5, 67.1%로 서울이 가장 높고 고산이 가장 낮았다. 연간 비율 변화는 NA는 증가하고 PD, DDM은 감소하는 경향을 보였다. 유형별 AOD는 NA가 모든 사이트에서 가장 높은 값을 보였다. 또한, NA의 비율과 AOD는 지속적으로 증가하는 추세를 보였다.

동북아시아 대기오염물질의 장거리 이동 지시자 선정 연구 (Identification of Long-Range Transported Air Pollution Indicators over Northeast Asia)

  • 박신영;김철희
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.38-55
    • /
    • 2013
  • This study has been performed to select several indicators of long-range transport process that can be applied to the Northeast Asia. We first classified high air pollution days into long-range transport (LRT) dominant cases and the local emission dominant (LED) cases based on the synoptic meteorological variables including vorticity and geostrophic wind speed/direction at a geopotential level of 850 hPa. LRT cases were further categorized into two types: LRT-I type with air mass pathways from northern China and/or Mongolia, and LRT-II type from central and southern China. In each categorized case, we examined the difference of both measured aerosol optical properties of AERONET at two sites in western Korea, and the simulated characteristics of LRT process by MM5-CMAQ model. We contrasted LRT case with LED case, and then generated the LRT indicators applicable to Northeast Asia. The results showed that fine and coarse modes of LRT-II were relatively smaller than LED and LRT-I cases, respectively. Aerosol size distribution showed significantly higher concentration of fine-mode particle (mainly smoke or urban aerosols) in LED case in comparison with that of LRT groups (LRT-I, II), suggesting the amplitudes fine modes of LRT relative to LED as a possible LRT indicator. From the results of MM5-CMAQ modeling, we concluded that the conversion ratios for sulfur ($F_s$) were the most effective indicators of LRT cases, and the ratio of VOC to NOx and NOx to CO were found to be the second most effective indicators of LED case.

단일입자분석법을 이용한 지하상가에서 채취한 실내입자의 특성분석 (Single-particle Characterization of Aerosol Samples Collected at an Underground Shopping Area)

  • 강선이;황희진;박유명;강수진;김혜경;노철언
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.594-603
    • /
    • 2008
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis, was applied to characterize four samples collected at an underground shopping area connected to Dongdeamun subway station, in January and May 2006. Based on the analysis of their chemical compositions of the samples, many distinctive particle types are identified and the major chemical species are observed to be soil-derived particles, iron-containing particles. sulfates. nitrates, and carbonaceous particles. which are encountered both in coarse and fine fractions. Carbonaceous particles exist in carbon-rich and organic. Soil derived particles such as aluminosilicates, AlSi/C, $CaCO_3\;and\;SiO_2$ are more frequently encountered in spring samples than winter samples. Nitrate- and sulfate-con taming particles are more frequently encountered in winter samples, and those nitrate- and sulfate-containing particles mostly exist in the chemical forms of $Ca(CO_3,\;NO_3),\;Ca(NO_3,\;SO_4),\;(Na,\;Mg)NO_3\;and\;(Mg,\;Na)(NO_3,\;SO_4)$. Fe-containing particles which came from nearby subway platform are in the range of about 10% relative abundances for all the samples. It is observed that nitrate- and sulfate-containing particles and carbonaceous particles are much more frequently encountered in indoor aerosol samples than in outdoor aerosols, implying that $NO_x,\;SO_x$, and VOCs at the underground shopping area were more partitioned into aerosol phase.