DOI QR코드

DOI QR Code

DMA를 이용한 나노 입자의 크기 분류법에 대한 이해와 성능개선

Understanding Size Selection of Nanoparticles Using a Differential Mobility Analyzer (DMA) and Its Performance Enhancement

  • Kim, Seok-Hwan (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Sang-Wook (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2014.03.12
  • 심사 : 2014.03.20
  • 발행 : 2014.03.31

초록

A differential mobility analyzer (DMA) has been widely used as a standard tool for classifying nanoparticles with a certain size. More recently, several new types of DMA have been tested in an attempt to produce size-monodisperse nanoparticles. It is a bit surprise to see how simple the working theory of the DMA is. Although the theory was demonstrated quite successful, no one can guarantee whether the theory still works in another geometry of the DMA. In this regard, we first investigated the validity of the theory under various working conditions and then moved to check the validity upon minor change in its design. For the valid test, we compared the results with those obtained from a computational fluid dynamics.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Brunelli N. A., Neidholdt E. L., Giapis K. P., Flagan R. C., and Beauchamp J. L. (2013). Continuous Flow Ion Mobility Separation with Mass Spectrometric Detection Using a Nano‐Radial Differential Mobility Analyzer at Low Flow Rates, Anal. Chem, Vol. 85(9), pp. 4335‐4341. https://doi.org/10.1021/ac3032417
  2. Allmaier G., Laschober C. and Szymanski W. W.(2008). Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles‐protein complexes, lipoparticles, and viruses, Journal of the American Society for Mass Spectrometry, Vol. 19, pp. 1062‐1068. https://doi.org/10.1016/j.jasms.2008.05.017
  3. Bacher G., Szymanski W. W., Kaufman S. L., Zollner P., Blaas D. and Allmaier G.(2001). Charge‐reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses, J. Mass Spectrom., Vol. 36, pp. 1038‐1052. https://doi.org/10.1002/jms.208
  4. Chen D. R. and Pui D. Y. H. (1997). Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements, J. Aerosol Sci., Vol. 28(6), pp. 985‐1004. https://doi.org/10.1016/S0021-8502(97)00004-9
  5. Chen D. R., Pui D. Y. H., Hummes D., Fissan H., Quant F. R. and Sem G. J. (1998). Design and evaluation of a nanometer aerosol differential mobility analyzer(Nano‐DMA), J. Aerosol Sci., Vol. 29, pp. 497‐509. https://doi.org/10.1016/S0021-8502(97)10018-0
  6. Flagan R. C. (2008). Differential Mobility Analysis of Aerosols: A Tutorial, KONA Powder and Particle Journal, Vol. 26, pp. 443‐451
  7. Grassian V. H., O'Shaughnessy P. T., Adamcakova‐ Dodd A., Pettibone J. M. and Thorne P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm, Environmental Health Perspectives, Vol. 115, pp. 397‐402. https://doi.org/10.1289/ehp.10302R
  8. Hagwood C., Sivathanu Y. and Mulholland G. (1999) The DMA Transfer Function with Brownian Motion a Trajectory/Monte‐Carlo Approach, Aerosol Sci. Technol., Vol. 30, pp. 40‐61. https://doi.org/10.1080/027868299304877
  9. Hewitt G. S. (1957). The Charging of Small Particles for Electrostatic Precipitation, AIEE Trans, Vol. 76, pp. 300‐306.
  10. Ji. J., Jung. J., Kim. S., Yoon. J., Park. J., Choi. B., Chung. Y., Kwon. I., Jeong. J., Han. B., Shin. J., Sung. J., Song. K and Yu. I. (2007). Twenty ‐eight‐day inhalation toxicity study or silver nanoparticles in Sprague the dawley rats, Inhalation Toxicology, Vol. 19, pp. 857‐871. https://doi.org/10.1080/08958370701432108
  11. Knutson E. O. and Whitby K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications, J. Aerosol Sci, Vol. 6, pp. 443‐451. https://doi.org/10.1016/0021-8502(75)90060-9
  12. Knutson E. O. and Whitby K. T. (1975). Accurate Measurement of Aerosol Electric Mobility Moments, J. Aerosol Sci, Vol. 6, pp. 453‐460. https://doi.org/10.1016/0021-8502(75)90061-0
  13. Liu B. Y. H. and Pui D. Y. H. (1973). A Submicron Aerosol Standard and the Primary, Absolute Calibration of the Condensation Nuclei Counter, J. Colloid and Interface Science, Vol. 47(1), pp. 155‐171.
  14. Lall A. A., Ma X., Guha S., Mulholland G. W., Zachariah M. R. (2009). Online Nanoparticle Mass Measurement by Combined Aerosol Particle Mass Analyzer and Differential Mobility Analyzer: Comparison of Theory and Measurements, Aerosol Sci. Technol., Vol. 43, pp. 1075‐1083. https://doi.org/10.1080/02786820903095484
  15. Mamakos A., Ntziachristos L., Samaras Z. (2007). Diffusion broadening of DMA transfer functions. Numerical validation of Stolzenburg model, J. Aerosol Sci., Vol. 38, pp. 747‐763. https://doi.org/10.1016/j.jaerosci.2007.05.004
  16. Mamakos A., Ntziachristos L., Samaras Z. (2008) Differential Mobility Analyser Transfer Functions in Scanning Mode, J. Aerosol Sci., Vol. 39, pp. 227‐246. https://doi.org/10.1016/j.jaerosci.2007.11.005
  17. Martinez‐Lozano P., Labowsky M. (2009). An experimental and numerical study of a miniature high resolution isopotential DMA, J. Aerosol Sci., Vol. 40, pp. 451‐462. https://doi.org/10.1016/j.jaerosci.2009.01.004
  18. Mei F., Fu H., Chen D. R. (2011). A cost‐effective differential mobility analyzer(cDMA) for multiple DMA column applications, J. Aerosol Sci., Vol. 42, pp. 462‐473. https://doi.org/10.1016/j.jaerosci.2011.04.001
  19. Pease L. F., Elliott J. T., Tsai D. H., Zachariah M. R. and Tarlov M. J. (2008). Determination of protein aggregation with differential mobility analysis: Application to IgG antibody, Biotechnology and Bioengineering, Vol. 101, pp. 1214‐1222. https://doi.org/10.1002/bit.22017
  20. Ramechecandane S., Beghein C., Allard F., Bombardier P. (2011) Modelling ultrafine/nano particle dispersion in two differential mobility analyzers( M‐DMA and L‐DMA), Building and Environment, Vol. 46, pp. 2255‐2266. https://doi.org/10.1016/j.buildenv.2011.05.005
  21. Rouenhoff M., Hontanon E., Azabal A., Ramiro E. and Kuis F. E. (2012). Scaling‐up the production of monodisperse nanoparticles by means of a high ‐flow rate parallel plate DMA, EAC Conference.
  22. Rus J., Moro D., Sillero J. A., Royuela J., Casado A., Estevez‐Molinero F., de la Mora J. F. (2010). IMS‐MS studies based on coupling a differential mobility analyzer (DMA) to commercial API‐MS systems, J. Mass Spectrom., Vol. 298, pp. 30‐40. https://doi.org/10.1016/j.ijms.2010.05.008
  23. Salthammer T., Uhde E. (2009). Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation (2nd ed.), WILEY‐VCH: Weinheim
  24. Song. D. K., Chang H., Kim. S. S. and K. Okuyama (2005). Numerical Evaluation of the Transfer Function of a Low Pressure DMA by Using the Langevin Dynamic Equation, Aerosol Sci. Technol, Vol. 39, pp. 701‐712. https://doi.org/10.1080/02786820500182396
  25. Song. D. K., Lee. H. M, Chang H., Kim. S. S., M. Shimada, K. Okuyama (2006). Performance evaluation of long differential mobility analyzer( LDMA) in measurements of nanoparticles, J. Aerosol Sci., Vol. 37, pp. 598‐615. https://doi.org/10.1016/j.jaerosci.2005.06.003
  26. Stolzenburg M. R. (1988) An ultrafine aerosol size distribution measuring system, Ph.D. thesis, University of Minnesota, Minneapolis.
  27. White F. (2001). Fluid mechanics., New York: McGraw‐ Hill.

피인용 문헌

  1. Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182119