• Title/Summary/Keyword: Aerosol Deposition Method

Search Result 89, Processing Time 0.029 seconds

Fabrication of Photocatalytic TiO2 thin Film Using Aerosol Deposition Method and its Filtration Characteristics (에어로졸 증착법을 이용한 광촉매 TiO2 박막 제조 및 박막의 여과 특성)

  • Choi, Wonyoul;Lee, Jinwoo;Kim, Shijun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2010
  • The objective of this study is to evaluate the effect of operational parameters such as rotation speed and vibrating milling time for the fabrication of photocatalytic $TiO_2$ thin film using aerosol deposition methods. $TiO_2$ powders produced in the range of 1,000-3,000 rpm of rotation speed of centrifugal separator are ineffective on the fabrication of $TiO_2$ thin film by aerosol deposition due to the problem of nozzle powder jam. $TiO_2$ powders controlled by vibrating milling had about 420 nm of average diameter after 2 hr of vibrating milling time. The result of XRD analysis indicated that $TiO_2$ powders had a anatase phase. Vibrating milling methods was considered to be an effective pre-treatment process for $TiO_2$ powder control. Consequently $TiO_2$ photocatalytic thin film with dispersion of anatase crystallites controled by vibrating milling was successfully fabricated by aerosol deposition. The permeation flux of $TiO_2$ photocatalytic thin film with the immobilized $TiO_2$ powder was higher than that of suspended $TiO_2$ powder. Therefore, $TiO_2$ photocatalytic thin film promises to be one of the effective methods for enhancing filtration performance for the treatment of organic pollutants.

Phtocatalytic Activity of the $SrBi_2Nb_2O_9$ Thick Film by Aerosol Deposition (Aerosol deposition을 이용한 $SrBi_2Nb_2O_9$의 고정화에 의한 광촉매 특성에 관한 연구)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Hwang, Kwang-Taek;Ko, Sang-Min;Cho, Woo-Seok;Kim, Jin-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.375-382
    • /
    • 2010
  • A layered perovskite photocatalysts, $SrBi_2Nb_2O_9$ (SBN), was synthesized by the conventional solid-state reaction method and characterized by X-ray diffraction (XRD) and UV-visble spectrophotometry. The results showed that the structure of $SrBi_2Nb_2O_9$ is orthorhombic. Diffuse reflectance spectra for calcined and attrition-milled SBN showed the main absorption edges were less 400 nm, that is ultraviolet region. SBN under micron-sized powder was deposited on the $Al_2O_3$ by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $SrBi_2Nb_2O_9$ photocatalytic thick film was fabricated. AD-deposited SBN thick films were characterized by XRD, scanning electron microscopy (SEM) and UV-visable spectrophotometry, Moreover, it was found that several nano-sized SBN film by AD process can improve the photocatalytic activity under visable reflectance.

Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared With or Without Dispersing Sonication

  • Kang, Mingu;Lim, Cheol-Hong;Han, Jeong-Hee
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Nanotoxicological research has shown toxicity of nanomaterials to be inversely related to particle size. However, the contribution of agglomeration to the toxicity of nanomaterials has not been sufficiently studied, although it is known that agglomeration is associated with increased nanomaterial size. In this study, we prepared aerosols of nano-sized carbon black by 2 different ways to verify the effects of agglomeration on the toxicity and deposition of nano-sized carbon black. The 2 methods of preparation included the carbon black dispersion method that facilitated clustering without sonication and the carbon black dispersion method involving sonication to achieve scattering and deagglomeration. Male Sprague-Dawley rats were exposed to carbon black aerosols 6 hr a day for 3 days or for 2 weeks. The median mass aerodynamic diameter of carbon black aerosols averaged $2.08{\mu}m$ (for aerosol prepared without sonication; group N) and $1.79{\mu}m$ (for aerosol prepared without sonication; group S). The average concentration of carbon black during the exposure period for group N and group S was $13.08{\pm}3.18mg/m^3$ and $13.67{\pm}3.54mg/m^3$, respectively, in the 3-day experiment. The average concentration during the 2-week experiment was $9.83{\pm}3.42mg/m^3$ and $9.08{\pm}4.49mg/m^3$ for group N and group S, respectively. The amount of carbon black deposition in the lungs was significantly higher in group S than in group N in both 3-day and 2-week experiments. The number of total cells, macrophages and polymorphonuclear leukocytes in the bronchoalveolar lavage (BAL) fluid, and the number of total white blood cells and neutrophils in the blood in the 2-week experiment were significantly higher in group S than in normal control. However, differences were not found in the inflammatory cytokine levels (IL-$1{\beta}$, TNF-${\alpha}$, IL-6, etc.) and protein indicators of cell damage (albumin and lactate dehydrogenase) in the BAL fluid of both group N and group S as compared to the normal control. In conclusion, carbon black aerosol generated by sonication possesses smaller nanoparticles that are deposited to a greater extent in the lungs than is aerosol formulated without sonication. Additionally, rats were narrowly more affected when exposed to carbon black aerosol generated by sonication as compared to that produced without sonication.

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho;Kim, Seung-Wook;Kim, Samjung;Kang, Eun-Young;Lee, Min Lyul;Samal, Sneha;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.488-495
    • /
    • 2021
  • Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

Electrical properties of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 전기적 특성)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thickness of $10{\sim}20{\mu}m$ were fabricated on silicon substrate by aerosol deposition method. As-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$. The electrical properties of films deposited by PZT powders were characterized using impedance analyzer and Sawyer-Tower circuit. The PZT powder was prepared by both conventional solid reaction process and sol-gel process. The remanent polarization, coercive field, and dielectric constant of the $10{\mu}m$ thick film with solid reaction process were $20{\mu}C/cm^2$, 30 kV/cm and 1320, respectively. On the other hand, the PZT films by sol-gel process showed a poor dielectric constant of 635. The reason was probably due to the presence of pores produced from organic residue during annealing.

Fabrication of Ceramic and Ceramic-Polymer Composite Thick Films by Aerosol Deposition Method (Aerosol Deposition Method을 응용한 세라믹 후막과 세라믹 -폴리머 복합체 후막 제작)

  • Cho, Sung-Hwan;Yoon, Young-Joon;Kim, Hyung-Jun;Kim, Hyo-Tae;Kim, Ji-Hoon;Nam, Song-Min;Baik, Hong-Koo;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.170-170
    • /
    • 2009
  • aerosol deposition method(ADM)은 에어로졸화 된 고상의 원료분말을 노즐을 통해 분사시켜 소결과정을 거치지 않고도 상온에서 고밀도 후막을 제조할 수 있으며, 세라믹, 고분자, 금속 등의 다양한 코팅이 가능하다. 본 연구에서는 ADM들 이용하여 세라믹 후막 및 세라믹-폴리머 복합체 후막을 제조하였고 60 mm 노즐을 이용하여 대면적 세라믹 후막 성장도 시도되었다. 세라믹 후막의 원료로는 낮은 유전율과 우수한 품질계수를 갖는 $Al_2O_3$ 분말과 AlN의 분말이 사용되었으며, 세라믹에 비하여 높은 탄성과 1,500~2,000의 품질계수를 갖는 테프론(teflon) 분말이 세라믹과의 복합체 후막성장에 사용되었다. 세라믹-폴리머 복합체의 경우, 폴리머의 함유량에 따라 후막 내부의 결정립 크기가 20 때의 평균 결정립을 갚는 세라믹 후막에 비해 최대 10배 정도까지 증가하는 것을 확인할 수 있었으며, 이에 따라 후막에서의 유전특성 및 전기적인 특성, 열전도도, 투과율이 크게 변화하는 것을 확인할 수 있었다. 본 연구에서는 이러한 물성 변화에 대한 원인 고찰을 위하여 후막의 미세구조 및 화학조성 등에 다양한 분석이 이루어졌으며, 상온에서 성막되는 후막의 고분자 기판으로의 응용을 위한 최적의 공정조건을 제시하고자 한다.

  • PDF