Fabrication of Photocatalytic TiO2 thin Film Using Aerosol Deposition Method and its Filtration Characteristics

에어로졸 증착법을 이용한 광촉매 TiO2 박막 제조 및 박막의 여과 특성

  • 최원열 (강릉원주대학교 금속재료공학과) ;
  • 이진우 (강릉원주대학교 토목공학과 대학원) ;
  • 김시준 (한국폐기물협회) ;
  • 김종오 (강릉원주대학교 토목공학과)
  • Received : 2009.05.11
  • Accepted : 2009.12.18
  • Published : 2010.01.01

Abstract

The objective of this study is to evaluate the effect of operational parameters such as rotation speed and vibrating milling time for the fabrication of photocatalytic $TiO_2$ thin film using aerosol deposition methods. $TiO_2$ powders produced in the range of 1,000-3,000 rpm of rotation speed of centrifugal separator are ineffective on the fabrication of $TiO_2$ thin film by aerosol deposition due to the problem of nozzle powder jam. $TiO_2$ powders controlled by vibrating milling had about 420 nm of average diameter after 2 hr of vibrating milling time. The result of XRD analysis indicated that $TiO_2$ powders had a anatase phase. Vibrating milling methods was considered to be an effective pre-treatment process for $TiO_2$ powder control. Consequently $TiO_2$ photocatalytic thin film with dispersion of anatase crystallites controled by vibrating milling was successfully fabricated by aerosol deposition. The permeation flux of $TiO_2$ photocatalytic thin film with the immobilized $TiO_2$ powder was higher than that of suspended $TiO_2$ powder. Therefore, $TiO_2$ photocatalytic thin film promises to be one of the effective methods for enhancing filtration performance for the treatment of organic pollutants.

본 연구에서는 에어로졸 증착법을 사용하여 광촉매 $TiO_2$ 박막을 제조하기 위하여 원심분리기의 회전속도, vibration milling 시간에 의한 입경 변화 등과 같은 운전인자의 영향을 검토하였고, 제조된 고정화 $TiO_2$ 광촉매 박막의 경우와 $TiO_2$ 광촉매 분말을 부유 상태로 존재시킨 경우와의 막투과 특성의 변화를 실험적으로 비교검토 하였다. 원심분리기의 회전속도 1000-3000rpm 에서 얻어진 $TiO_2$ 분말은 저온 분사 성형법(aerosol deposition, AD)으로 $TiO_2$ 박막을 제조하는데 있어서 nozzle powder 막힘 현상과 같은 문제점을 나타내었다. 한편, vibrating milling에 의해 제어된 $TiO_2$ 분말의 평균입경 크기는 vibrating milling 2시간 후 약 420nm로 AD법을 이용한 입자의 증착에 효과적인 것으로 나타났다. XRD 분석 결과, 광촉매에 효과적인 아나타제 상을 잘 유지하고 있는 것으로 나타났으며, 이러한 결과로부터 vibrating milling은 $TiO_2$ 분말을 제어하는데 있어 적절한 전처리 공정임을 확인할 수 있었다. 제조된 $TiO_2$ 박막의 여과 특성으로 $TiO_2$ 분말을 분리막의 표면에 고정화 한 경우가 부유 상태일 경우보다 더 높은 막투과 유속을 나타내었다.

Keywords

Acknowledgement

Supported by : 강릉원주대학교

References

  1. 김겸동, 이수근, 김선근 (1993), Chemical Aerosol Deposition에 의한 막형성, HWAHAK KONGHAK, Vol. 31, No. 6, pp. 776-787.
  2. 환경부 (2005), 신소재 분리막과 촉매오존 공정에 의한 저농도 폐수처리시스템의 실용화, pp. 3.
  3. Akedo, J. and Lebedev, M. (2002), Powder Preparation in Aerosol Deposition Method for Lead Zirconate Titanate Thick Films, Jpn J. Appl. Physic., Vol. 41, pp. 6980. https://doi.org/10.1143/JJAP.41.6980
  4. Almquist, C. B. and Biswas, P. (2002), Role of Synthesis Method and Particle Size of Nanostructured $TiO_{2}$ on Its Photoactivity, J. Catal. Vol. 212, pp. 145-156. https://doi.org/10.1006/jcat.2002.3783
  5. Haung, C. M., Wang, S. F., Peng, C. J., Shieg, J., Chang, C. S. and Lin, T. S. (2006), Microstructures and Dielectric Properties of PZT Thick Films Prepared by Aerosol Plasma Deposition with Microwave Annealing, Materials Science and Engineering B, Vol. 133, pp. 181-185. https://doi.org/10.1016/j.mseb.2006.06.033
  6. Kim, J. O., Shin, E. B., Bae, W. E., Kim, S. K. and Kim, R. H. (2002), Effect of Intermittent Back Ozonation for Membrane Fouling Reduction in Microfiltration Using a Metal Membrane, Desalination, Vol. 143, pp. 269-278. https://doi.org/10.1016/S0011-9164(02)00265-5
  7. Lee, S. A., Choo, K. H., Lee, C. H., Lee, H. I., Hyeon, T., Choi, W. and Kwon, H. H. (2001), Use of Ultrafiltration Membrane for the Separation of TiO2 Photocatalysts in Drinking Water Treatment, Ing. Eng. Chem. Res., Vol. 40, pp. 1712-1719. https://doi.org/10.1021/ie000738p
  8. Lee, S. M., Jung, J. Y. and Chung, Y. U. (2001), Novel Method for Enhancing Permeate Flux of Submerged Membrane System in Two-Phase Anaerobic Reactor, Wat. Res., Vol. 35, pp. 471-477. https://doi.org/10.1016/S0043-1354(00)00255-4
  9. Morosanu, C. E. (1990), Thin Films Science and Technology, Elsevier, New York, Vol. 7, pp. 47.
  10. Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H. and Yanagida, S. (2002), Dependence of $TiO_{2}$ Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. B, Vol. 106, No. 39, pp. 10004-10010. https://doi.org/10.1021/jp020051d
  11. Ohtani, B., Ogawa, Y. and Nishimoto, S. (1997), Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions, J. Phys. Chem. B. Vol. 101, No. 19, pp. 3746-3752. https://doi.org/10.1021/jp962702+
  12. Ryu, J. G., Park, D. S., Hahn, B. D., Choi, J. J., Yoon, W. H., Kim, K. Y. and You, H. S. (2008), Photocatalytic $TiO_{2}$ Thin Film by Aerosol-Deposition: From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature, Applied Catalysis B: Environ., Vol. 83, pp. 1-7. https://doi.org/10.1016/j.apcatb.2008.01.020
  13. Selli, E., Baglio, D., Montanarella, L. and Bidoglio, G. (1999), Role of Humic Acids in the $TiO_{2}$-Photocatalyzed Degradation of Tetrachloroethene in Water, Wat. Res., Vol. 33, pp. 1827. https://doi.org/10.1016/S0043-1354(98)00368-6
  14. Temakone, K., Tilakaratne, C. T. K. and Kottegoda, I. R. M. (1995), Photocatalytic Degradation of Organic Contaminants in Water with $TiO_{2}$ Supported on Polythene Films, J. Photochem. Photobiol. A, Vol. 87, pp. 177. https://doi.org/10.1016/1010-6030(94)03980-9
  15. Tsurumi, T., Nam, S. M., Mori, N., Kakemoto, H., Wada, S. and Akedo, J. (2003), Room-Temperature Preparation of $Al_{2}O_{3}$ Thick Films by Aerosol Deposition Method for Integrated RF Modules, J. Kor. Ceram. Soc., Vol. 40, pp. 715-719. https://doi.org/10.4191/KCERS.2003.40.8.715
  16. Wang, X. Y., Lee, C. Y., Peng, C. J., Chen, P. Y. and Chang, P. Z. (2008), A Micrometer Scale and Low Temperature PZT Thick Film MEMS Process Utilizing and Aerosol Deposition Method, Sensors and Actuators A, Vol. 143, pp. 469-474. https://doi.org/10.1016/j.sna.2007.11.027
  17. Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z. -C. (1999), Effects of Particle Size of $TiO_{2}$ on Photocatalytic Degradation of Methylene Blue in Aqueous Suspensions, Ing. Eng. Chem. Res. Vol. 38, pp. 373-379. https://doi.org/10.1021/ie980378u
  18. Zhang, Z., Wang, C.-C., Zakaria, R. and Ying, J. Y. (1998), Role of Particle Size in Nanocrystalline $TiO_{2}$-based Photocatalysts, J. Phys. Chem. B, Vol. 102, No. 52, pp. 10871-10878. https://doi.org/10.1021/jp982948+