• Title/Summary/Keyword: Aeration rate

Search Result 415, Processing Time 0.02 seconds

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

Ethanol Production from Glycerol using Pachysolen tannophilus in a Surface-aerated Fermentor (Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산)

  • Kim, Yi-Ok;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.886-892
    • /
    • 2013
  • We investigated ethanol production from glycerol after screening of the yeast Pachysolen tannophilus ATCC 32691. For yeast to produce ethanol form glycerol, it is important that aeration is finely controlled. Therefore, we attempted to produce ethanol using a surface-aerated fermentor. When 880 ml of YPG medium (1% yeast extract, 2% peptone, 2% glycerol) was used to produce ethanol, the optimal aeration conditions for ethanol production were a surface aeration rate and agitation speed of 500 ml/min and 300 rpm, respectively. In a fed-batch culture, the maximum ethanol production and the maximum ethanol yield from glycerol (Ye/g) was 5.74 g/l and 0.166, respectively, after 90 hr using the surface-aerated fermentor.

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Effects of Biomass Concentration and Sludge Loading Rate on Bioactivity and Membrane Fouling in a Submerged Membrane Bioreactor System (침지형 분리막 생물반응기에서 미생물 농도와 슬러지 부하에 따른 미생물 활성 변화와 막오염 특성 연구)

  • Tak Tae-Moon;Bae Tae-Hyun;Jang Gyoung-Gug
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2004
  • In this study, membranes were coupled to a sequencing batch reactor for simultaneous removal of organic matter and nitrogen, and the influences of MLSS (mixed liquor suspended solid) concentration and the sludge loading rate on membrane fouling and bioactivity were investigated. The amount of membrane fouling slightly increased with MLSS concentration at both non-aeration and aeration conditions, but effect of MLSS concentration was more significant at aeration condition. Although the effect of MLSS concentration on membrane fouling was found to be insignificant at low concentration level, extremely low sludge loading, which were generated by the maintenance of large amount of biomass in the reactor, caused severe membrane fouling, and air scouring effect decreased significantly in this condition. Specific bioactivity was constantly reduced as sludge loading rate decreased. In spite of high MLSS concentration over 17,000 mg/L, the activity of the reactor decreased at extremely low sludge loading rate presumably due to the lower oxygen transfer and the competition of biomass to deficient substrate.

Optimization of Environmental Parameters for Extracellular Chitinase Production by Trichoderma harzianum SJG-99721 in Bioreactor (Trichoderma harzianum SJG-99721의 체외 분비 chitinase 생산에 미치는 생물 반응기에서의 반응 최적화 연구)

  • 이호용
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.167-170
    • /
    • 2004
  • A self-directing optimization procedure was applied to determine the best environmental factors in operating the bioreactor. The self-directing optimization process was employed to determine the best conditional combination of multi parameters, pH, temperature, aeration rate and mixing rate toy maximal production of chitinase by Trichoderma harzianum SJG-99721 in batch mode fermentation. Among these factors, the parameters of pH and aeration rate were found to be particularly important on mycellial growth and chitinase activity. pH 4.89, an aeration rate of 3.22 ι per minute and an agitation rate of 225 rpm was found to be the best combination. By the optimization, chitinase activity was dramatically increased from an initial value of 4.221 U under basic conditions to n final value of 16.825 U.

Effects of Aeration on Biological Activities During Composting of Dairy Manure in Enclosed BenchScale Reactor (밀폐형 Bench-scale reactor 에서의 우분 퇴비화시 Aeration 이 생물학적 활성에 미치는 영향)

  • Kang, Hang-Won;Zhang, R.H.;Park, Hyang-Mee;Ko, Jee-Yeon;Rhee, In-Koo;Park, Kyeong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.260-267
    • /
    • 1998
  • This experiment used the enclosed bench-scale reactors of 242 liters was conducted to obtain basic data on temporal and spatial variations in temperature, oxygen and moisture content, which were important factors of biological activities, during composting of mixture of dairy manure and rice straw. The reactors with thermocouples, oxygen sensor and datalogger were aerated at four different rates of 0.09, 0.18, 0.90 and 1.79 l $min^{-1}kg$ dry $solids^{-1}$. The higher aeration rates were, the faster the rates of increase and decrease in composting temperature were in both of initial and turnover stage, and the smaller the temperature difference between exhaust air and composting materials. Composting temperature of initial stage increased suddenly in all aeration rates, then stationary phase of temperature in materials and exhaust air showed at $50{\sim}53^{\circ}C$ for 5 hours and at $45^{\circ}C$ between 5 and 15 hours, respectively. In initial stage the maximum temperature was decreased with increasing aeration rates but in the stage after turnover it was the opposite except for 1.79 l $min^{-1}kg^{-1}$. Time arrived at the maximum temperature of composting materials was later in low-aeration rates than high-aeration rates at both stages. Time maintained high-temperature more than $45^{\circ}C$ was rapidly decreased with increasing aeration rates. In initial stage of composting maintaining time of $65^{\circ}C$ or more was the longest in the treatments of 0.09 and 0.18 l $min^{-1}kg{-1}$, while those of $55{\sim}65^{\circ}C$ and $45{\sim}55^{\circ}C$ was in 0.90 and 1.79 l $min^{-1}kg{-1}$, respectively. The minimum oxygen content and the maximum oxygen consumption rate in exhaust air through composting materials showed the increased trends with increasing aeration rates. In initial stage the minimum oxygen content was ranged from 0.9% to 7.4% for 32 to 59.5 hours and the maximum oxygen consumption rate was $1.89{\sim}6.48$ $gh^{-1}kgVS^{-1}$. In the stage after turnover their levels were $2.1{\sim}19.9%$ and $1.76{\sim}3.49 %$g/h-㎏ VS, respectively, for 16 to 49.5 hours.

  • PDF

The Operating Characteristics of SMMIAR process for Biological Nitrogen.phosphorus Removal (생물학적 질소.인 제거를 위한 SMMIAR(Submerged Moving Media Intermittent Aeration Reactor) 공정의 운전 특성)

  • 김홍태;김학석;김규창
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogenㆍphosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2 $\ell$/$m^2$/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5mg/$\ell$ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

Measurements of Void Fraction of Aerated Flows over Hydraulic Structures (수공구조물에 의한 폭기 흐름의 기포분율 측정)

  • Ryu, Yong-Uk;Lee, Nam-Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.137-144
    • /
    • 2019
  • This study carried out experimental investigation through measurements of void fraction of aerated flows generated near hydraulic structures. The imaging technique applying the shadowgraphy method was employed to quantify aeration by measuring void fractions. Aerated flows in the vicinity of a sloped weir and a stepped weir were measured using the imaging technique. Spatially distributed void fraction that was possible from gray images gives aeration rate of the flows over hydraulic structures with eco-environmental function. Aeration over the stepped weir takes place more strongly and widely in its front slope and downstream compared to the sloped weir.