The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994. Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide. In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation. AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide. AVL is committed to continuously enhance ADVISOR's capabilities. Provides rapid analysis of the performance and fuel economy of conventional and advanced, light and heavy-duty vehicle models as well as hybrid electric and fuel cell vehicle models. ADVISOR Simulates the Following Vehicle Characteristics. - Optimal drivetrain component sizes that provide the best fuel economy Vehicle's ablility to follow the speed trace - Amount of fuel and/or electric energy required by various vehicle concepts - Peak power and efficiency achieved by the drivetrain components - Torque and speed distribution of the engine - Average efficiency of the transmission - Gradeability of vehicles at various velocities
Objectives : This study was performed to develop a standard instrument of oriental medical evaluation for hwa-byung. Methods : The advisor committee on this study was organized by 17 neuropsychiatry professors of oriental medical colleges. The items and structure of the instrument were quoted from the instrument of pattern identification for hwa-byung. We took consultation twice from the advisor committee and we also took additional advices by e-mail. Results : We discriminated between bian-zheng and su-zheng from the answers of the advisor committee. We got the mean weight of each symptom and sign from the answers of the advisor committee. We got the final weight from the combination of the ratio of bian-zheng to the number of all answers of the advisor committee and mean weight. Conclusions : The instrument of oriental medical evaluation for hwa-byung was developed through experts' discussion. If the validity and reliability of this instrument is confirmed through additional clinical trial, the instrument of oriental medical evaluation for hwa-byung is expected to be applied to the subsequent research.
The purpose of this case study is to analyze the B2C security information service model using the robo-advisor, to develop various service models and to urge new companies to enter. Overseas robo-advisor service market is growing rapidly with the launch of various B2C service models beyond B2B. On the other hand, as the domestic market is dominated by B2B services and serviced just index portfolio which is nascent, it lacks products which are used for active asset management. Recently as the government announced the approval of online investment advisory service, the B2C market of domestic asset management has entered a growth phase, centered on generations familiar with IT. We propose to extend the concept of Robo-Advisor service in accordance with the financial market change. By that model, we will study the case of the algorithm of the investment masters' philosophy and contribute to the expansion of the B2C service market.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.4270-4284
/
2019
This study presents a reference model (RM) and the architecture of a cognitive health advisor (CHA) that integrates information with ambient intelligence. By controlling the information using the CHA platform, the reference model can provide various ambient intelligent solutions to a user. Herein, a novel approach to a CHA RM based on evolutional cyber-physical systems is proposed. The objective of the CHA RM is to improve personal health by managing data integration from many devices as well as conduct a new feedback cycle, which includes training and consulting to improve quality of life. The RM can provide an overview of the basis for implementing concrete software architectures. The proposed RM provides a standardized clarification for developers and service designers in the design and implementation process. The CHA RM provides a new approach to developing a digital healthcare model that includes integrated systems, subsystems, and components. New features for chatbots and feedback functions set the position of the conversational interface system to improve human health by integrating information, analytics, and decisions and feedback as an advisor on the CHA platform.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.287-295
/
2017
2016년 3월 구글 (Google)의 바둑인공지능 알파고 (AlphaGo)가 이세돌 9단과의 바둑대결에서 승리한 이후 다양한 분야에서 인공지능 사용에 대한 관심이 높아지고 있는 가운데 금융투자 분야에서도 인공지능과 투자자문 전문가의 합성어인 로보어드바이저 (Robo-Advisor)에 대한 관심이 높아지고 있다. 인공지능 (artificial intelligence)기반의 의사결정은 비용 절감은 물론 효과적인 의사결정을 가능하게 한다는 점에서 큰 장점이 있다. 본 연구에서는 기술적 분석 (technical analysis) 지표와 딥러닝 (deep learning) 모형을 결합하여 한국 코스피 지수를 예측하는 모형을 개발하고 제시한 모형들의 예측력을 비교, 분석한다. 분석 결과 기술적 분석 지표에 딥러닝 알고리즘을 결합한 모형이 주가지수 방향성 예측 문제에 응용될 수 있음을 확인하였다. 향후 본 연구에서 제안된 기술적 분석 지표와 딥러닝모형을 결합한 기법은 로보어드바이저서비스에 응용할 수 있는 일반화 가능성을 보여준다.
우리나라 주식시장에서 애널리스트들이 발표하는 주가 전망 자료를 입력변수로 활용한 로보어드바이저 포트폴리오의 수익성이 있는지를 분석하고자 하였다. 포트폴리오 구성을 위한 표본 주식은 업종을 대표하는 8개의 우량주이며, 분석 기간은 2003년부터 2019년까지의 17년 자료이다. 표본 주식에 대한 주가와 애널리스트 주가 전망 자료를 결합하는 블랙리터만모형을 통해 로보어드바이저 포트폴리오를 추천하고 벤치마크 대비 수익성을 비교하였다. 실증 분석 결과, 애널리스트들의 주가 전망 자료를 결합한 로보어드바이저 알고리즘의 수익성은 벤치마크 포트폴리오보다 연평균 1% 이상의 초과 수익을 시현하였다. 투자자들의 비판적 시각에도 불구하고 개별 종목에 대한 투자가 아닌 상대적 투자 비중을 구하는 로보어드바이저 관점에서는 애널리스트들의 주가 전망 자료가 경제적 가치를 보유하고 있음을 밝혔다. 향후 연구에서는 애널리스트들의 주가 전망 영향력이 대형주보다 더 클 것으로 예측되는 중 소형주를 포함한 로보어드바이저 포트폴리오의 수익성을 분석할 필요가 있다.
The Journal of Asian Finance, Economics and Business
/
제7권7호
/
pp.123-129
/
2020
The objective of this study is to examine the differentiated influence of sell-side advisors and buy-side advisors on mergers and acquisitions (M&A). Unlike prior studies on M&A advisors, the study addresses different roles of target and acquirer advisors, and explores their influences on the cumulative abnormal returns (CAR) and acquisition premiums with an empirical analysis of longitudinal data of M&As conducted by Japanese listed firms except financial companies from 1995 to 2012. M&A data were obtained from the Securities Data Corporation's (SDC) database, and the individual firm data were collected from the Nikkei Economic Electronic Databank System (NEEDS), which provides a wide range of corporate information including financial status, operational performance, and strategy. Using a sample of 452 cases for the CAR and 498 cases for the analysis of acquisition premiums, the empirical results support the hypotheses of the target advisor's positive association with CAR and acquirer advisor's positive association with acquisition premiums. The findings of this study indicate the target advisor's positive contribution to the success of acquisition process and performance, and acquirer advisor's negative influence on the deal progress. The study provides theoretical implications on M&A research and practical insights into the investment banking industry.
With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.
본 연구는 수학교사가 수학학습 상담을 하면서 학습상담자로서의 전문성을 어떻게 키워 나가는지에 대해 자기연구(Self-study)의 방법을 활용한 사례 연구이다. 이를 위하여 수학 교사의 수학 학습 상담의 과정과 상담의 내용, 수학학습 상담자로서의 교사의 자기 성찰의 내용과 전문성 신장 과정에 대한 자기관찰을 실시하였다. 교사는 수학 학습 상담에 맞는 상담 모형을 개발하여 총 5회의 상담을 실시하였으며, 각 회기의 수학 학습 상담 과정의 내용에 대해 서술하였다. 상담 과정에서 연구자는 상담 자료 분석과 자신의 상담 내용을 토대로 자기 성찰 일지를 작성하였고, 이를 바탕으로 자신의 상담 과정을 반성하였다. 또한 상담전문가와의 면담을 통해 상담 과정에서 필요한 교사의 역할과 개선할 점에 대한 조언을 얻어 상담에서 필요한 부분을 개선해 나가는 과정을 거쳤다. 위의 두 과정을 거쳐 연구자는 수학 학습 상담자로서 자신의 강점과 약점에 대해 파악하여 강점은 강화하고 약점을 개선해 나가면서 상담에 필요한 능력을 기르고, 학생을 종합적으로 이해하는 능력을 갖추게 되었다. 자기연구 과정을 통해 교사는 스스로 변화되는 모습을 겪으며 학생과 함께 변화하고 수학 학습 상담에 필요한 실천적인 지식을 습득하였다.
Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.