• Title/Summary/Keyword: Adversarial Networks

Search Result 214, Processing Time 0.022 seconds

Rapid Misclassification Sample Generation Attack on Deep Neural Network (딥뉴럴네트워크 상에 신속한 오인식 샘플 생성 공격)

  • Kwon, Hyun;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • Deep neural networks (DNNs) provide good performance for machine learning tasks such as image recognition and object recognition. However, DNNs are vulnerable to an adversarial example. An adversarial example is an attack sample that causes the neural network to recognize it incorrectly by adding minimal noise to the original sample. However, the disadvantage is that it takes a long time to generate such an adversarial example. Therefore, in some cases, an attack may be necessary that quickly causes the neural network to recognize it incorrectly. In this paper, we propose a fast misclassification sample that can rapidly attack neural networks. The proposed method does not consider the distortion of the original sample when adding noise. We used MNIST and CIFAR10 as experimental data and Tensorflow as a machine learning library. Experimental results show that the fast misclassification sample generated by the proposed method can be generated with 50% and 80% reduced number of iterations for MNIST and CIFAR10, respectively, compared to the conventional Carlini method, and has 100% attack rate.

Skin Lesion Image Segmentation Based on Adversarial Networks

  • Wang, Ning;Peng, Yanjun;Wang, Yuanhong;Wang, Meiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2826-2840
    • /
    • 2018
  • Traditional methods based active contours or region merging are powerless in processing images with blurring border or hair occlusion. In this paper, a structure based convolutional neural networks is proposed to solve segmentation of skin lesion image. The structure mainly consists of two networks which are segmentation net and discrimination net. The segmentation net is designed based U-net that used to generate the mask of lesion, while the discrimination net is designed with only convolutional layers that used to determine whether input image is from ground truth labels or generated images. Images were obtained from "Skin Lesion Analysis Toward Melanoma Detection" challenge which was hosted by ISBI 2016 conference. We achieved segmentation average accuracy of 0.97, dice coefficient of 0.94 and Jaccard index of 0.89 which outperform the other existed state-of-the-art segmentation networks, including winner of ISBI 2016 challenge for skin melanoma segmentation.

Bagging deep convolutional autoencoders trained with a mixture of real data and GAN-generated data

  • Hu, Cong;Wu, Xiao-Jun;Shu, Zhen-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5427-5445
    • /
    • 2019
  • While deep neural networks have achieved remarkable performance in representation learning, a huge amount of labeled training data are usually required by supervised deep models such as convolutional neural networks. In this paper, we propose a new representation learning method, namely generative adversarial networks (GAN) based bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse hierarchical representations in an unsupervised fashion. To boost the size of training data, to train deep model and to aggregate diverse learning machines are the three principal avenues towards increasing the capabilities of representation learning of neural networks. We focus on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled sample generation and bagging deep convolutional autoencoders (BDCAE) for robust feature learning. The proposed method improves the discriminative ability of learned feature embedding for solving subsequent pattern recognition problems. We evaluate our approach on three standard benchmarks and demonstrate the superiority of the proposed method compared to traditional unsupervised learning methods.

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Research of a Method of Generating an Adversarial Sample Using Grad-CAM (Grad-CAM을 이용한 적대적 예제 생성 기법 연구)

  • Kang, Sehyeok
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.878-885
    • /
    • 2022
  • Research in the field of computer vision based on deep learning is being actively conducted. However, deep learning-based models have vulnerabilities in adversarial attacks that increase the model's misclassification rate by applying adversarial perturbation. In particular, in the case of FGSM, it is recognized as one of the effective attack methods because it is simple, fast and has a considerable attack success rate. Meanwhile, as one of the efforts to visualize deep learning models, Grad-CAM enables visual explanation of convolutional neural networks. In this paper, I propose a method to generate adversarial examples with high attack success rate by applying Grad-CAM to FGSM. The method chooses fixels, which are closely related to labels, by using Grad-CAM and add perturbations to the fixels intensively. The proposed method has a higher success rate than the FGSM model in the same perturbation for both targeted and untargeted examples. In addition, unlike FGSM, it has the advantage that the distribution of noise is not uniform, and when the success rate is increased by repeatedly applying noise, the attack is successful with fewer iterations.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

An acoustic Doppler-based silent speech interface technology using generative adversarial networks (생성적 적대 신경망을 이용한 음향 도플러 기반 무 음성 대화기술)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • In this paper, a Silent Speech Interface (SSI) technology was proposed in which Doppler frequency shifts of the reflected signal were used to synthesize the speech signals when 40kHz ultrasonic signal was incident to speaker's mouth region. In SSI, the mapping rules from the features derived from non-speech signals to those from audible speech signals was constructed, the speech signals are synthesized from non-speech signals using the constructed mapping rules. The mapping rules were built by minimizing the overall errors between the estimated and true speech parameters in the conventional SSI methods. In the present study, the mapping rules were constructed so that the distribution of the estimated parameters is similar to that of the true parameters by using Generative Adversarial Networks (GAN). The experimental result using 60 Korean words showed that, both objectively and subjectively, the performance of the proposed method was superior to that of the conventional neural networks-based methods.

Perceptual Photo Enhancement with Generative Adversarial Networks (GAN 신경망을 통한 자각적 사진 향상)

  • Que, Yue;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.522-524
    • /
    • 2019
  • In spite of a rapid development in the quality of built-in mobile cameras, their some physical restrictions hinder them to achieve the satisfactory results of digital single lens reflex (DSLR) cameras. In this work we propose an end-to-end deep learning method to translate ordinary images by mobile cameras into DSLR-quality photos. The method is based on the framework of generative adversarial networks (GANs) with several improvements. First, we combined the U-Net with DenseNet and connected dense block (DB) in terms of U-Net. The Dense U-Net acts as the generator in our GAN model. Then, we improved the perceptual loss by using the VGG features and pixel-wise content, which could provide stronger supervision for contrast enhancement and texture recovery.

Face Recognition Research Based on Multi-Layers Residual Unit CNN Model

  • Zhang, Ruyang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1582-1590
    • /
    • 2022
  • Due to the situation of the widespread of the coronavirus, which causes the problem of lack of face image data occluded by masks at recent time, in order to solve the related problems, this paper proposes a method to generate face images with masks using a combination of generative adversarial networks and spatial transformation networks based on CNN model. The system we proposed in this paper is based on the GAN, combined with multi-scale convolution kernels to extract features at different details of the human face images, and used Wasserstein divergence as the measure of the distance between real samples and synthetic samples in order to optimize Generator performance. Experiments show that the proposed method can effectively put masks on face images with high efficiency and fast reaction time and the synthesized human face images are pretty natural and real.