• Title/Summary/Keyword: Advection-dispersion

Search Result 108, Processing Time 0.024 seconds

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

A Numerical Model for Cohesive Suspended Load Movement (점착성 부유사 이동에 관한 수치모형)

  • 안수한;이상화
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.119-127
    • /
    • 1990
  • The concentration of cohesive suspended sediment is determined by the circulation of water and the material dispersion. The equations of the two-dimensional, depth-integrated dispersive transport are the Reynolds equation, continuity equation, and advection-dispersion equation based on the Fick's law. A finite difference method has been applied to two models of circulation and dispersion transport. The circulation model is solved by the explicit scheme and the dispersion transport model is solved by multi-operational scheme. It is investigated wheter advective terms are included when the equation of circulation is applied to the model. For advection-dispersion equation, it was also investigated about variations of suspended sediment concentration with respect to the critical shear stresses.

  • PDF

Numerical Investigation of Transverse Dispersion in Natural Channels (자연하천에서 오염물질의 횡확산에 관한 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.151-162
    • /
    • 1995
  • A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.

  • PDF