• 제목/요약/키워드: Advection-dispersion

검색결과 108건 처리시간 0.027초

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형 (Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow)

  • 김대근;서일원
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형 (Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels)

  • 정영재;서일원
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.495-506
    • /
    • 2013
  • 본 연구에서는 전단류 분산이 이송과 난류에 의한 확산의 결합에 의해 발생한다는 Taylor (1954)의 가정을 바탕으로 개념적 모형을 구성하고, 이를 3차원 개수로에 적용하여 오염물질의 혼합과정을 재현할 수 있는 시간분리 혼합모형(Time-split Mixing Model; TMM)을 개발하였다. 개발된 모형은 연산자 분리 기법(operator split method)과 유사하게 혼합과정을 종방향 혼합과 횡방향 혼합으로 분리하고, 유속 연직편차에 의한 농도분리과정과 난류확산에 의한 연직방향 혼합과정을 순차적으로 반복 계산함으로써 2차원 이송-분산을 재현한다. 수치모의 결과, 제안된 모형은 수로벽면에 의한 농도중첩 효과를 잘 반영하고 있으며, Taylor 구간 내에서 2차원 이송-분산 모형의 해석해와 거의 일치하고 있음을 확인하였다(Chatwin, 1970). 본 모형은 하상경사, 하폭 대 수심 비, 혼합시간 등의 변화에 따라 분산 정도를 달리 재현하고 있으며, 산정된 종분산계수는 Elder(1959)가 제안한 상수값과는 달리 혼합시간에 따라 변화하는 양상을 나타냈다. 횡분산계수의 경우, Sayre와 Chang(1968), Fischer 등(1979)이 실험을 통해 제시한 값과 유사한 범위를 나타냈다.

점착성 부유사 이동에 관한 수치모형 (A Numerical Model for Cohesive Suspended Load Movement)

  • 안수한;이상화
    • 물과 미래
    • /
    • 제23권1호
    • /
    • pp.119-127
    • /
    • 1990
  • 점착성 부유사 농도분포는 해수유동과 물질 확산에 의해서 결정되며 지배방정식으로는 2차원 수심적분된 Reynolds운동방정식, 연속방정식과 Fick의 확산법칙에 근거를 둔 대류-확산방정식이 사용되었다. 해수유동과 점성퇴적물 확산인 두개의 모형은 유한차분법을 이용하였고 유동모형은 양해법, 확산모형은 다증법을 사용하여 부유사 이동의 현상을 파악하였다. 해수유동방정식의 적용시 이송항의 포함여부에 대해서 조사하였으며 물질확산 방정식에 대해서는 한계전단응력값의 변화가 부유사농도에 영향을 주는가에 대해서 비교하였다.

  • PDF

자연하천에서 오염물질의 횡확산에 관한 수치모형 (Numerical Investigation of Transverse Dispersion in Natural Channels)

  • 서일원;김대근
    • 물과 미래
    • /
    • 제28권5호
    • /
    • pp.151-162
    • /
    • 1995
  • 자연하천에서 오염물질의 횡확산과정은 정확하게 모의하기 위하여 2차원 유관확산모형을 개발하였다. 본 모형에서는 독립변수로서 횡방향거리 대신에 횡방향누가유량을 도입하였고, 하천의 주흐름을 따라 좌표축을 설정하는 자연좌표계를 사용하였다. 유도한 유관확산방정식을 풀기 위한 수치방법으로서 Eulerian-Lagrangian method를 이용하였다. 유관확산방정식을 연산자분리방법을 이용하여 이송을 지배하는 방정식과 확산을 지배하는 방정식으로 분리하였다. 그리고 이송방정식은 Eulerian 계산격자상에서 특성곡선법을 이용하였고 확산방정식은 중앙차분법을 이용하여 수치모의 하였다. 본 연구에서는 이송방정식의 풀이에서 사용되는 보간다항식으로 cubic spline 보간다항식을 이용하였다. 본 연구에서 개발한 모형을 적용하여 실제 자연하천에서 행해진 정상상태의 색소실험 결과를 모의한 결과개발된 모형이 우수한 거동을 보이고 있음이 밝혀졌다.

  • PDF