• Title/Summary/Keyword: Advanced material

Search Result 4,147, Processing Time 0.032 seconds

Adaptive Neural Control for Pure-feedback Nonlinear Systems (순궤환 비선형 시스템의 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Do-Hee;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.523-525
    • /
    • 2006
  • Adaptive neural state-feedback controllers for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis considerably to be simplified. The proposed controllers employ only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller.

  • PDF

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-sensitized Solar Cells

  • Choi, Hye-Ju;Choi, Hyun-Bong;Paek, Sang-Hyun;Song, Ki-Hyung;Kang, Moon-Sung;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Three organic sensitizers, JK-128, JK-129, and JK-130 containing quinoline unit are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-130 sensitized solar cell gave a short circuit photocurrent density of 11.52 mA $cm^{-2}$, an open circuit voltage of 0.70 V, and a fill factor of 0.75, corresponding to an overall conversion efficiency of 6.07%. We found that the $\eta$ of JK-130 was higher than those of other two cells due to the higher photocurrent. The higher $J_{sc}$ value is attributed to the broad and intense absorption spectrum of JK-130.

Adaptive Fuzzy Excitation Controller for Power System Stabilization (전력계통 안정화를 위한 적응 퍼지 여자 제어기)

  • Park, Jang-Hyun;Chang, Young-Hak;Lee, Jin;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.693-696
    • /
    • 2005
  • We propose a robust adaptive fuzzy controller for the transient stability and voltage regulation of a single-machine inflnite bus power system. The proposed control scheme is based on the input-output linearization to eliminate the system nonlinearities. To deal with uncertainties due to a parameter variation or a fault, we introduce fuzzy systems with universal function approximating capability which estimate the uncertainties on-line.

  • PDF

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Development of Stretchable Electronics Using Geometric Strategies and Applications

  • Seungkyu Lee;Kyusoon Pak;Jun Chang Yang;Steve Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.370-377
    • /
    • 2023
  • Soft and stretchable electronics, equipped with diverse functional devices, have recently garnered attention owing to their versatility in applications such as stretchable displays, flexible batteries, and electronic skin (e-skin). A fundamental challenge in realizing stretchable electronics lies in conferring the necessary flexibility to crucial electrical components such as electrodes and devices. However, the prevalent electronic materials, exhibit limited stretchability, presenting a significant obstacle to the advancement of soft and stretchable electronics. To overcome this challenge, various strategies rooted in geometrical engineering have been explored to enhance the adaptability of rigid materials. This study delves into the realm of geometrical engineering by, examining techniques such as serpentine patterns, kirigami-inspired designs, and island structures, with a keen focus on recent progress and future prospects.

Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process (Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구)

  • Seong, Min-Ho;Cha, Ji-Min;Moon, Seong-Cheol;Ryung, Si-Hong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

Effect of Hydroxyl Ethyl Cellulose Concentration in Colloidal Silica Slurry on Surface Roughness for Poly-Si Chemical Mechanical Polishing

  • Hwang, Hee-Sub;Cui, Hao;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.545-545
    • /
    • 2008
  • Poly-Si is an essential material for floating gate in NAND Flash memory. To fabricate this material within region of floating gate, chemical mechanical polishing (CMP) is commonly used process for manufacturing NAND flash memory. We use colloidal silica abrasive with alkaline agent, polymeric additive and organic surfactant to obtain high Poly-Si to SiO2 film selectivity and reduce surface defect in Poly-Si CMP. We already studied about the effects of alkaline agent and polymeric additive. But the effect of organic surfactant in Poly-Si CMP is not clearly defined. So we will examine the function of organic surfactant in Poly-Si CMP with concentration separation test. We expect that surface roughness will be improved with the addition of organic surfactant as the case of wafering CMP. Poly-Si wafer are deposited by low pressure chemical vapor deposition (LPCVD) and oxide film are prepared by the method of plasma-enhanced tetra ethyl ortho silicate (PETEOS). The polishing test will be performed by a Strasbaugh 6EC polisher with an IC1000/Suba IV stacked pad and the pad will be conditioned by ex situ diamond disk. And the thickness difference of wafer between before and after polishing test will be measured by Ellipsometer and Nanospec. The roughness of Poly-Si film will be analyzed by atomic force microscope.

  • PDF

Advanced Methodology of Composite Materials Qualification for Small Aircraft (소형항공기용 복합재료 인증시험)

  • Lee, Ho-Sung;Min, Kyung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.446-451
    • /
    • 2007
  • Since the introduction of advanced composite materials for use in aircraft, the material qualification has been a costly burden to the small airframe manufacturer. For each manufacturer, extensive qualification testing has often been performed to develop the base material properties and allowables at operating environmental conditions, regardless of whether this material system had been previously certificated by other manufacturers. In recent years, NASA, industry, and the FAA have worked together to develop a cost-effective method of qualifying composite material systems by the sharing of a central material qualification database. In this paper, the new methodology of composite material qualification is presented and material allowable of 350°F carbon fiber/epoxy composite material produced domestically is determined with this methodology.

Mechanically Flexible PZT thin films on Plastic Substrates (플라스틱 기판위의 기계적으로 유연성을 가진 PZT 박막)

  • Rho, Jong-Hyun;Ahn, Jong-Hyun;Lee, Nae-Eung;Ahn, Joung-Ho;Kim, Sang-Jin;Lee, Hwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.13-13
    • /
    • 2009
  • We have investigated the fabrication and properties of bendable PZT film formed on plastic substrates for the application in flexible memory. These devices used the PZT active layer formed on $SiO_2/Si$ wafer by sol-gel method with optimized device layouts and Pt electrodes. After etching Pt/PZT/Pt layers, patterned by photolithography process. these layers were transferred on PET plastic substrate using elastomeric stamp. The level of performance that can be achieved approaches that of traditional PZT. devices on rigid bulk wafers.

  • PDF