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ABSTRACT

Adaptive neural state-feedback controllers for the fully
nonaffine pure-feedback nonlinear system are presented in
this paper. By reformulating the original pure-feedback
system to a standard normal form with respect to newly
defined state variables, the proposed controllers require no
backstepping design procedures. Avoiding backstepping
makes the controller structure and stability analysis
considerably to be simplified. The proposed controllers
employ only one neural network to approximate unknown
ideal controllers, which highlights the simplicity of the
proposed neural controller.

1. Introduction
The following fully nonaffine nonlinear pure-feedback

system is considered in this paper.

= fi(xi’ $i+1)’i=1""’"‘1
z,= f.(x, u) (n
y= x4

where x; = [z, vz ]TER i=1,,n and uER
and yE R are the state vector and the system input and
output, respectively; f;( - )s, i=1,--,n are unknown
smooth fl;l'lCtiOIlS. Apaxt from the fact that f;s are smooth
functions of xi; 1, it should be noted that they are totally
unknown. Thus, it is assumed that there exists no
information on whether or not they contain useful
nonlinearities for stability that do not require to be
cancelled. By employing an NN approximator, the controlled
system (1) needs no linear-in-the-parameters condition, i.e.,
functions f; may not be linearly parameterized.

It should be noted that only few results have been
published on the adaptive approximator-based control of this
cloass of nonlinear system [1-3]. Although the same class
of system is considered in [3] its control algorithm is based

on adaptive backstepping algorithmthat has a heavy
computational burden as mentioned earlier. The proposed
adaptive neural controller requires no backstepping, which
makes the control law and stability analysis considerably
simple. Only one radial-basis function network (RBFN) with
n+2 inputs is employed to approximate unknown ideal
controllers, which highlights the simplicity of the proposed
controller.

2. Problem Formulation

For the controllability issue, the following assumption
must be made. '

Assumption 1: The absolute values of 8f;/0x; 1,
i=1,-,n—1 and 8f,/8u are nonzero and bounded,
that is, the following inequalities hold-

< oo7i=1,...’n_l

<iafi(xi,xi+1)
a(xi+l)

B\ X, u
0< }__f_._"__

2

<o0,i=1,-,n—1

Without loss of generality, instead of requiring respective
partial derivatives are positive as in [23-25], it is assumed
that the product of them is positive and bounded That is,
the following inequality holds

af i (xpxi4 1)\ 0f, (x,u)
0<(Hin=_ll f 1 ) f ” < oo

3

0T 1

for all (x,u)E€R™* !, Only with this mild assumption, the
controller is designed in what follows. The aim of this paper
is to design an adaptive neural controller for nonaffine
pure-feedback nonlinear SISO systems under plant
uncertainties which guarantees uniform ultimate boundedness
of all the estimated variables of the closed-loop system and
the output tracking of a given reference outpﬁt Ya (t).

By induction, if we define a; =0 and b, = f,, the
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following is satisfied for 2 = 2,---,n

z;= a; (x; )+ b (x;)

z."i: ai(xi)+bi(xi+l) @

where
i1
ai(xi): Ea%(ai—l(xi—l)'*’bi—1(Xi))fj(xj+'1) '
) - v
bix) = = ®
af;(x;41)
=(H;_i I )f<,+1>

with %, =[x, ul”.

pure-feedback system can be redescribed as the following
normal form with respect to the newly defined state
variables 2;s-

2= 24y, i=1,n—1
» = a,(x)+ b, (x,u) 6)
y=2z

N,
Il

The above description gives the insight that the
state-feedback control problem of the original pure-feedback
system can be viewed as that of the standard normal
system, which make the controller to avoid backstepping
design procedure.

3. Controller Design
3.1 Higher-order observer and lumped uncertanty

The vector y4, e, and a filtered tracking error s are
then defined as follows:

Ya= {yd,:l./d, “'7y¢(1n_1)]T

€= z27Yy

_(d b (D
s——(dt+/\) e=[A" 1]e

E= YT Ya =21 Y4

where A= [x'-l,(n—1)An-f,---,(n—1>A]T with
A>0.
Lemma 1 : If the assumption 1 holds, there exists a unique

function u*(x,v,s) that satisfies the following equality:
an(x)+ bi(x,u™(x,v,8)) + v= ks ' ®

where k> 0 is a input gain at designer’s disposal.

From lemma 1, it -is straightforward to show that
Lyaounov function £, = s2/2 is _asymptotically stable for
this ideal controller. In thiS paper, we do not try to
approximate the ideal controller that satlsﬁes eq directly.
Instead, the u* is rearranged as

As a result, the original

u*=-ks-(-ks-u*(h))
@-ks~- Uaq(h)

and one RBFN with its input being 7 is employed to

approximate unknown function u,4* (7). It should be noted

that since the s and wvare unavailable, they will be
substituted by estimated values later. For the time being,
the input vector to the RBFN is assumed to be 7.

9

3.2 Brief description of RBFN

In this paper, one RBFN is employed to capture the
unknown nonlinearity (10) of the system. In general, the
output of the multi-input single-output RBFN is described
by

ﬁad(xin)= quf'(xin). (10)

Here, x;, = [x7 v]TER™"! is the input vector to the
RBEN; u,,€ R, the RBFN output; wE R, the adjustable
parameter vector; ®( -+ ): R 'R’ a nonlinear vector
function of the inputs; L, the number of RBFs. The ith
element of w, w;i=1,---,L, is the synaptic weight
between the ith neuron in the hidden layer, and output
neuron and P; (Xm) is a Gaussian function in the form of

|xin “mi| )

2ai2

®(x;,)= exp(— (11)

where m; is a (n+ 1)-dimensional vector representing the

center of the tth basis function, and o; is the variance

representing the spread of the basis function. The primary
advantage of RBFN is that it has the capability to
approximate nonlinear mappings to any degree of accuracy.

3.2 Introduction of high—gain observer and filtered
tracking error

For the actual control action, the time-derivatives of the
system output ¥ is required However, only the state
variables of are assumed to be available, the followmg
high-gain observer (HGO) is adopted

b= & -
6§2= & o (12)
b= = i~ dyyy — = diba— & +y(8)

where € is a small design constant and parameters, d; to
d,_, are chosen such that the polynomial
s"+dys" "' +-+d,_;s+1 is Hurwitz. Then, there

exist positive constants A and t such that VE>t we
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lz—z| < eh - :
T
~ 2 2 3 é.n (13)
z= 1 "9y 1| - ’
€ 62 en 1

The estimations of € and 8 using (5) are denoted as
follows:

é= i - yd
- - (14)
§= [AT 1le.
Using these definitions, the actual inputs to the RBFN.is

determined as ';)= [xT 0 $]7 where 1A1=—y,(in) +[0 ATe.
3.4 Control and adaptive laws

The actual control input is proposed as:
u=—ks—w d(n). (15)

The adaptive la\& for the w is chosen as the following
lemma.

Lemma 2 : The update law for w is determined as
w=1(58(n)— o,(W)lslw) - (16)

where -y is the positive learning rate and
C¢ ~
~ = if |wl>e,
o, (w)=1¢,
0 otherwise.
with €, being a design constant and |B| < Cg. Then,

an

lwl < e,
- 'The proof of Lemma 2 is omitted.

Theorem 1 : Consider the adaptive system consisting of the
plant under assumption 1, controller (15), and adaptive law
for RBFN weight vector (16). Then, the filterted trancking
error § is uniformaly ultametely bounded.

The proof is omitted.

plant
fully nonaffine
pure —feedback
nonlinear system

| <

<— (1)

high - gain | ¥
observer

" Fig. 1 Block diagram of the overall control system

3. Conclusions

Adaptive neural controllers for SISO fully nonaffine
pure-feedback nonlinear system are presented in this paper.
By reformulating the original pure-feedback system to a
standard normal form with respect to the output and its
n—1 time derivatives, the proposed controller requires no
backstepping design procedure. That is, it is shown that the
original control problemof the considered system can be
reformulated as the output-feedback control of standard
normal system.Avoiding backstepping makes the controller
structure and stability analysis considerably simplified. The
proposed controllers employ only one neural network to
approximate unknown ideal controllers, which highlights the
simplicity of the proposedneural controllers.
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