• Title/Summary/Keyword: Advanced high strength steel

Search Result 276, Processing Time 0.029 seconds

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation (플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산)

  • Myungjae Kim;Jongwook Kwak;Jiwoong Kim;Kyung-Nam Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Effect of Paint Baking on the Strength and Failure of Spot Welds for 780 TRIP Steels (780 MPa급 TRIP강의 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Son, Jong-Woo;Nam, Dae-Geun;Kim, Dong-Cheol;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.66-73
    • /
    • 2010
  • Conventional fracture test of resistance spot weld had been performed without consideration of paint baking process in automobile manufacturing line. This study was aim to investigate the effect of paint baking on fracture mode and load carrying capacity in fracture test for resistance spot welded 780TRIP steels. With paint baking cycle after resistance spot welds, peel tests and microhardness were conducted on the as-welded and baked samples. Resistance spot welds in AHSS (Advanced High Strength Steels) are prone to display partial interfacial fractures during fracture test or vehicle crash. Baking cycle increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial to full button fracture for the L-type peel tests. Specially, the differences in fracture appearance are apparent when the nugget size of spot welds is small enough to produce the partial interfacial fracture. The comparison of macrohardness and microstructure between as-welded and baked samples showed that there are no large difference in change the fracture mode. However, the results of the instrumented indentation test suggested that fusion zone and HAZ of baked sample have less tensile and yield strength and proves that the tempering effects are applied and enhanced the resistance to fracture on welds with application of baking cycle.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Properties of Advanced Synthetic Fiber Reinforced Concrete for Improvement of Tunnel Shotcrete Performance (터널 숏크리트 성능 향상을 위한 고기능성 합성섬유 보강 콘크리트의 물성 평가)

  • Jeon, Chanki;Jeon, Joongkyu
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The Application of Steel Fiber Shotcrete in tunneling construction has become part of tunneling practice at least since the 1970s because of its high bending and tensile properties. Over the past 3 decades, researcher from all over the world have been significantly developing the associated technologies for improved performance of SFRS. But still it has some major drawbacks in terms of durability, damage of pumping hose, wastage due to rebound concrete, corrosion and it costs high. To overcome this situation researcher has to look for some alternative material. Therefore, this part study deals with the three types of fiber in order to find good alternative for steel fiber. Polyamide and Polypropylene fiber were used in this study with 0.6, 0.5% mixing ratio. To evaluate its fresh and harden properties air content, slump, compressive, split tensile and bending strength were measured. After comparing the results of all three types of fiber reinforced concrete with its different mixing proportion this study propose that polyamide fiber with addition ratio of 0.6 % for field use.

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.

Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential (음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

Behavior of the Surface Precipitation of Manganese Oxides during Hot-dip Galvanizing (용융아연 도금욕에서 망간 산화물의 표면석출 거동)

  • Lee, Ho Jong;Kim, Myung Soo
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • Advanced high strength steels undergo recrystallization annealing in reducing gas atmosphere before galvanizing to improve mechanical properties. The selective oxidations of elements such as Mn, Si, Cr and Al during annealing decrease wettability of liquid zinc, resulting in bare spots and other defects. In this work, Fe-3wt%Mn steel sheet was annealed at $780^{\circ}C$ for 1200 sec. in 5% $H_2-N_2$ atmosphere and then dipped into zinc bath held at $460^{\circ}C$, which contained 0.2wt% dissolved Al. MnO crystallines in the average size of 200 nm were formed on the surface after annealing. It is estimated that MnO has been detached into bath with the formation and growth of inhibition layer with longer immersion time during galvanizing. No evidence of aluminothermic reduction of MnO has been found in this study.