DOI QR코드

DOI QR Code

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation

플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산

  • Myungjae Kim (Department of Materials Science and Engineering, Soongsil University) ;
  • Jongwook Kwak (Department of Materials Science and Engineering, Soongsil University) ;
  • Jiwoong Kim (Department of Materials Science and Engineering, Soongsil University) ;
  • Kyung-Nam Kim (Department of Advanced Materials Engineering, Kangwon National University)
  • 김명재 (숭실대학교 신소재공학과) ;
  • 곽종욱 (숭실대학교 신소재공학과) ;
  • 김지웅 (숭실대학교 신소재공학과) ;
  • 김경남 (강원대학교 신소재공학과)
  • Received : 2023.09.16
  • Accepted : 2023.10.10
  • Published : 2023.10.27

Abstract

High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Keywords

Acknowledgement

This study has been worked with the support of a research grant of Kangwon National University in 2022.

References

  1. V. K. Kodur and E. M. Aziz, Mater. Struct., 48, 1669 (2015).
  2. M. S. Rashid, Science, 208, 862 (1980).
  3. A. K. Jha, B. K. Prasad , O. P. Mod i, S. Das and A. H. Yegneswaran, Wear, 254, 120 (2003).
  4. B. Liu, J. Li, W. Guo, P. Xu, S. Zhang and Y. Zhang, J. Iron Steel Res. Int., 30, 193 (2023).
  5. T. W. Montemarano, B. P. Sack, J. P. Gudas, M. G. Vassilaros and H. H. Vanderveldt, J. Ship Prod., 2, 145 (1986).
  6. T. Lant, D. L. Robinson, B. Spafford and J. Storesund, Int. J. Pressure Vessels Piping, 78, 813 (2001).
  7. D. Bandhu, J. J. Vora, S. Das, A. Thakur, S. Kumari, K. Abhishek and M. N. Sastry, Mater. Manuf. Processes, 37, 1727 (2022).
  8. G. Yang, X. Sun, Z. Li, X. Li and Q. Yong, Mater. Des., 50, 102 (2013).
  9. S. Li, H. Yu, Y. Lu, J. Lu, W. Wang and S. Yang, Wear, 474, 203647 (2021).
  10. G. Cacciamani, J. De Keyzer, R. Ferro, U. E. Klotz, J. Lacaze and P. Wollants, Intermetallics, 14, 1312 (2006).
  11. Y. Chen, S. Wang, J. Xiong, G. Wu, J. Gao, Y. Wu, G. Ma, H.-H. Wu and X. Mao, J. Mater. Sci. Technol., 132, 213 (2023).
  12. C. Gao, M. Q. Yang, J. C. Pang, S. X. Li, M. D. Zou, X. W. Li and Z. F. Zhang, Mater. Sci. Eng., A, 832, 142418 (2022).
  13. C. Zhou, Q.-B. Ye, J. Hu, T. Zhao, X.-H. Gao and Z.-D. Wang, Mater. Sci. Eng., A, 831, 142356 (2022).
  14. V. Drozd, M. Asadikiya, S. Yang and Y. Zhong, Mater. Today Commun., 33, 104118 (2022).
  15. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).
  16. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 80, 891 (1998).
  17. A. Van De Walle, Calphad, 33, 266 (2009).
  18. C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen and Z.-K. Liu, Phys. Rev. B, 69, 214202 (2004).
  19. P. Wisesa, K. A. McGill and T. Mueller, Phys. Rev. B, 93, 155109 (2016).
  20. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976).
  21. K. Ohno, R. Kuwahara, T. N. Pham, S. Bhattacharyya and R. Sahara, Sci. Rep., 12, 1 (2022).
  22. N. Troullier and J. L. Martins, Phys. Rev. B, 43, 1993 (1991).
  23. J.-H. Cho and M. Scheffler, Phys. Rev. B, 53, 10685 (1996).
  24. W. Voight, Lehrbuch Der Kristallphysik, p.1, Teubner, Leipzig, Berlin (1928).
  25. X.-Q. Chen, H. Niu, D. Li and Y. Li, Intermetallics, 19, 1275 (2011).
  26. G. N. Greaves, A. L. Greer, R. S. Lakes and T. Rouxel, Nat. Mater., 10, 823 (2011).
  27. S. F. Pugh, Philos. Mag. (1798-1977), 45, 823 (1954).
  28. A. J. E. Foreman, Acta Metall., 3, 322 (1955).
  29. R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig and C. Draxl, Comput. Phys. Commun., 184, 1861 (2013).
  30. Y. Li and R. B. Thompson, J. Appl. Phys., 67, 2663 (1990).
  31. X.-G. Lu, M. Selleby and B. Sundman, Acta Mater., 55, 1215 (2007).
  32. X.-G. Lu, M. Selleby and B. Sundman, Acta Mater., 53, 2259 (2005).
  33. N. Munjal, P. Bhambhani, G. Sharma, V. Vyas and B. K. Sharma, J. Phys.: Conf. Ser., 377, 012067 (2012).
  34. P. Olsson, I. A. Abrikosov, L. Vitos and J. Wallenius, J. Nucl. Mater., 321, 84 (2003).
  35. X. Li, X. Li, S. Schonecker, R. Li, J. Zhao and L. Vitos, Mater. Des., 146, 260 (2018).
  36. H. Zhang, M. P. J. Punkkinen, B. Johansson, S. Hertzman and L. Vitos, Phys. Rev. B, 81, 184105 (2010).
  37. X. Hu and T. Watanabe, Mater Trans., 42, 1969 (2001).
  38. E. F. Kneller, J. Appl. Phys., 35, 2210 (1964).
  39. F. Zhou, Y. T. Chou and E. J. Lavernia, Mater Trans., 42, 1566 (2001).
  40. P. G. Agache, C. Monneur, J. L. Leveque and J. De Rigal, Arch. Dermatol. Res., 269, 221 (1980).
  41. P. J. Burnett and D. S. Rickerby, Thin Solid Films, 148, 41 (1987).
  42. X. Li, M. Ren and Y. Zhang, Mater. Today Commun., 34, 105035 (2023).
  43. H. Ledbetter, M. Lei and S. Kim, Phase Transit., 23, 61 (1990).
  44. B. A. Danilchenko, T. Paszkiewicz, S. Wolski, A. Jezowski and T. Plackowski, Appl. Phys. Lett., 89, 061901 (2006).
  45. Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay and C. Dames, Nano Lett., 11, 2206 (2011).