• Title/Summary/Keyword: Advanced composite materials

Search Result 1,135, Processing Time 0.023 seconds

Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability (에폭시 배합비에 따른 내열성 복합재료 최적조건)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Sung, Ill;Jin, Dal-Saem;Kang, Suk-Won;Kim, Jeong-Cheol;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through various experiments. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and $T_g$ was conformed according to different epoxy mixing ratio. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.

Vertically Aligned Carbon Film Synthesized from Magnetically Oriented Polyacetylene using Morphology Retaining Carbonization

  • Goh, Munju;Choi, Yong Mun
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.226-229
    • /
    • 2012
  • Polyacetylene (PA) films with vertically aligned fibril morphology were synthesized in homeotropic nematic liquid crystal (N-LC) solvent by using a magnetic field of 5 Tesla as an external perturbation. Scanning electron microscope (SEM) photographs indicated that the lengths of fibrils from the substrate were $5-35{\mu}m$, depending on polymerization time. Carbonization was carried out using iodine-doped PA film and a morphology-retaining carbonization method. From the SEM results, we confirmed that the vertical morphology of the PA remains unchanged even after carbonization at $800^{\circ}C$. The weight loss of the films due to carbonization at $800^{\circ}C$ is about 20% of the weight of the film before iodine doping. It is expected that vertically aligned carbon might be a precursor for preparing vertical graphite materials, which materials could be useful for electrochemical energy storage and cell electrodes.

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.

Effect of molding condition on tensile properties of hemp fiber reinforced composite

  • Takemura, K.;Minekage, Y.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.385-394
    • /
    • 2007
  • In this study, the effect of molding condition on the tensile properties for plain woven hemp fiber reinforced green composite was examined. The tensile properties of the composite were compared with those of the plain woven jute fiber composite fabricated by the same process. Emulsion type biodegradable resin or polypropylene sheet was used as matrix. The composites were processed by the compression molding where the molding temperature and its heating time were changed from 160 to $190^{\circ}C$ and from 15 to 25 min, respectively. The following results were obtained from the experiment. The tensile property of hemp fiber reinforced polypropylene is improved in comparison with polypropylene bulk. The strength of composite is about 2.6 times that of the resin bulk specimen. Hemp fiber is more effective than jute fiber as reinforcement for green composite from the viewpoint of strength. The molding temperature and time are suitable below $180^{\circ}C$ and 20 min for hemp fiber reinforced green composite. Hemp fiber green composite has a tendency to decrease its tensile strength when fiber content is over 50 wt%.

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.

Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation

  • Zhu, Lei;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • This paper reported a simple deposition-precipitation method, introducing the metal (Ni, Ag and Sn) and $Na_2S{\cdot}5H_2O$ to preparedispersion metal sulfide nanoparticles on the surface of the Multi-walled carbon nanotube for synthesis of CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composite photocatalysts. The characterization of the prepared CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composites was performed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis and BET analysis. Furthermore, the MB degradation rate constant for CNT-SnS composite was $5.68{\times}10^{-3}$ under visible light irradiation, which was much higher than the corresponding values for other samples. The detailed formation and photocatalytic mechanism are also provided here.

Preparation and Catalytic Properties of Pt/CNT/TiO2 Composite

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.269-275
    • /
    • 2010
  • In this study, we successfully prepared CNT/$TiO_2$, Pt/CNT and Pt/CNT/$TiO_2$ composites and investigated their photocatalytic activity in MB solution by irradiation under UV light. Fourier transform infrared (FT-IR) spectroscopy was used to characterize the functional group on the surface of MWCNTs, which oxidized by MCPBA. Brunauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to analyze the prepared composites. The results of the decomposition of the MB solution indicated that the Pt/CNT/$TiO_2$ composite had the best photocatalytic activity among the three kinds of composites.

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF