References
- M. Abdullah, C. Low, and R.W. Matthews, "Effects of Common Inorganic Anions on Rates of Photocatalytic Oxidation Organic Carbon over Illuminated Titanium Dioxide," J. Phys. Chem., 94 6820-25 (1990). https://doi.org/10.1021/j100380a051
- B. Tryba, A.W. Morawski, T. Tsumura, M. Toyoda, and M. Inagaki, "Hybridization of Absorptivity with Photocatalytic Activity-Carbon-coated Anatase," J. Photochem. Photobiol. Chem., 167 127-35 (2004). https://doi.org/10.1016/j.jphotochem.2004.04.011
-
Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakamura, T. Nakashima, Y. Kubota, and A. Fujishima, "Degradation of Bisphenol A in Water by
$TiO_2$ Photocatalyst," Environ. Sci. Technol., 35 2365-68 (2001). https://doi.org/10.1021/es001757t - P.J. Senogles, J.A. Scott, G. Shaw, and H. Stratton, "Photocatalytic Degradation of the Cyanotoxin Cylindrospermopsin, using Titanium Dioxide and UV Irradiation," Water. Res., 35 1245-55 (2001). https://doi.org/10.1016/S0043-1354(00)00372-9
- L.P. Childs and D.F. Ollis, "Is Photocatalysis Catalytic," J. Catal., 66 383-90 (1980). https://doi.org/10.1016/0021-9517(80)90041-X
- M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, "Environmental Appli-cations of Semiconductor Photocatalysis," Chem. Rev., 95 69-96 (1995). https://doi.org/10.1021/cr00033a004
- N.S. Lewis, "Light Work with Water," Nature, 414 589-90 (2001). https://doi.org/10.1038/414589a
- M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang, "Room-temperature Ultraviolet Nanowire Nanolasers," Science, 292 1897-99 (2001). https://doi.org/10.1126/science.1060367
- M.A. Kolb, W.F. Maier, and K. Stöwe, "High-throughput syntheses of Nano-scaled mixed Metal Sulphides," Catal. Today., 159 64-73 (2011). https://doi.org/10.1016/j.cattod.2010.07.010
- G. C. Chinchen and M. S. Spencer, "A Comparison of the Water-Gas Shift Reation on Chromia-Promoted Magnetite and on Supported Copper Catalysts," J. Catal., 112 325-27 (1988). https://doi.org/10.1016/0021-9517(88)90145-5
- B.L. Abrams and J.P.Wilcoxon, "Nanosized Semiconductors for Photooxidation," Crit. Rev. Solid State Mater. Sci., 30 153-82 (2005). https://doi.org/10.1080/10408430500200981
- S. G. Hickey, C. Waurisch, B. Rellinghaus, and A. Eychmuller, "Size and Shape control of Colloidally Synthesized IV-VI Nanoparticulate Tin(II) Sulfide," J. Am. Chem. Soc., 130 14978-80 (2008). https://doi.org/10.1021/ja8048755
- P. S.Tang, H. F.Chen, F. Cao, G. X. Pan, K. Y. Wang, M. H. Xu, and Y. H. Tong, "Nanoparticulate SnS as an Efcient Photocatalyst under Visible-light Irradiation," Mater. Lett., 65 450-452 (2011). https://doi.org/10.1016/j.matlet.2010.10.055
-
E. K. Li, K. H. Johnson, and D. E. Eastman, "Freeouf, Localized and Bandlike Valence-Electron States in
$FeS_2\;and\;NiS_2$ ," Phys. Rev. Lett., 32 470-72 (1974). https://doi.org/10.1103/PhysRevLett.32.470 -
A. K. Abass. "The Spectrally Selective Properties of Chemically-deposited
$Ag_2S$ on Aluminium," Sol. Energy. Mater., 17 375-78 (1988). https://doi.org/10.1016/0165-1633(88)90019-6 -
S. Banerjee, S. Bhattacharya, and D. Chakravorty, "Resistivity Hysteresis of
$Ag_2S$ Nanocomposites," J. Phys. Chem. C., 111 13410-13 (2007). https://doi.org/10.1021/jp073814b - R. H. Baughman, A. A. Zakhidov, and D. H. Wa, "Carbon Nanotubes - the Route toward Applications," Science, 297 787-92 (2002). https://doi.org/10.1126/science.1060928
-
S. Z. Kang, Z. Xu, Y. Song, and J. Mu, "Photocatalytic Activity of High Aspect Ratio
$TiO_2$ Nanorods," J. Dispersion. Sci. Technol., 26 857-59 (2006). -
W. F. Wang, Ph. Serp, Ph. Kalck, and Faria Joaquim Luis, "Visible Light Photodegradation of Phenol on MWNT-
$TiO_2$ Composite Catalysts Prepared by a Modied Sol-gel Method," J. Mol. Catal. A: Chem., 235 194-99 (2005). https://doi.org/10.1016/j.molcata.2005.02.027 -
L. Zhu, Z. D. Meng, M. L. Chen, F. J. Zhang, J. G. Choi, and W. C. Oh, "Photodegradation of MB from Aqueous Solution by the
$M-AC/TiO_2$ Photocatalyst under the UV Irradiation," J. Photocatal. Sci., 1 69-76 (2010). - Z. Wang, A. Lough, and I. Manners, "Synthesis and Characterization of Water-Soluble Cationic and Anionic Polyferrocenylsilane Polyelectrolytes," Macromolecules., 35 7669-77 (2002). https://doi.org/10.1021/ma0203694
- I. Manners, "Poly(ferrocenylsilanes): Novel Organometallic Plastics," Chem. Commun., 10 857-67 (1999).
- Y. B. Zhao, H. J. Liu, F. Wang, J. J. Liu , K. C. Park, and M. B. Endo, "A simple Route to Synthesize Carbon-Nanotube/Cadmium-Sulde Hybrid Heterostructures and their Optical Properties," J. Solid State Chem., 182 875-80 (2009). https://doi.org/10.1016/j.jssc.2009.01.001
- L. H. Tang, Y. H. Zhu, X. L. Yang, J. J. Sun, and C. Z. Li, "Self-assembled CNTs/CdS/Dehydrogenase Hybrid-based Amperometric Biosensor Triggered by Photovoltaic Effect," Biosens. Bioelectron., 24 319-23 (2008). https://doi.org/10.1016/j.bios.2008.03.043
- D. W. Kim, D. S. Kim, Y. G. Kim, Y. C. Kim, and S. G. Oh, "Preparation of Hard Agglomerates Free and Weakly Agglomerated Antimony Doped Tin Oxide (ATO) Nanoparticles by Coprecipitation Reaction in Methanol Reaction Medium," Mater. Chem. Phys., 97 452-57 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.046
- X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic TiO2 Coating of Nanosized Particles Supported on Activied Carbon by AP-MOCVD," Carbon, 43 263-70 (2005).
-
L. L. Wang, Y.C. Zhu, H. B. Li, Q.W. Li, and Y. T. Qian, "Hydrothermal Synthesis of NiS Nanobelts and
$NiS_2$ Microspheres Constructed of Cuboids Architectures," J. Solid State Chem., 183 223-27 (2010). https://doi.org/10.1016/j.jssc.2009.10.021 -
W. X. Zhang, L. Zhang, Z. H. Hui, X. M. Zhang, and Y. T. Qian, "Synthesis of Nanocrystalline
$Ag_2S$ in Aqueous Solution," Solid. State. Ionics., 130 111-14 (2000). https://doi.org/10.1016/S0167-2738(00)00497-5 - P. S.Tang, H. F. Chen, F. Cao, G. X. Pan, K. Y. Wang, M. H. Xu, and Y. H. Tong, "Nanoparticulate SnS as an Efcient Photocatalyst under Visible-light Irradiation," Mater. Lett., 65 450-52 (2011). https://doi.org/10.1016/j.matlet.2010.10.055
- W. C. Oh, F. J. Zhang, and M. L. Chen, "Characterization and Photodegradation Characteristics of Organic Dye for Pt-titania Combined Multi-walled Carbon Nanotube Composite Catalysts," J. Ind. Eng. Chem., 16 321-26 (2010). https://doi.org/10.1016/j.jiec.2010.01.032
- I. Robel, B. A. Bunker, and P. V. Kamat, "Single-Walled Carbon Nanotube-CdS Nanocomposites as Light-Harvesting Assemblies: Photoinduced Charge-Transfer Interactions," Adv. Mater., 17 2458-63 (2005). https://doi.org/10.1002/adma.200500418
- Y. Sun, S.R. Wilson, and D.I. Schuster, "High Dissolution and Strong Light Emission of Carbon Nanotubes Dissolved in Aniline," J. Am. Chem. Soc., 123 5348-49 (2001). https://doi.org/10.1021/ja0041730
Cited by
- S-CNT Nanocomposites with Enhanced Photo-catalytic Activity vol.51, pp.1, 2014, https://doi.org/10.4191/kcers.2014.51.1.001
- Visible-light active electrochemically deposited tin selenide thin films: synthesis, characterization and photocatalytic activity vol.31, pp.6, 2012, https://doi.org/10.1007/s10854-020-03027-0