DOI QR코드

DOI QR Code

Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability

에폭시 배합비에 따른 내열성 복합재료 최적조건

  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Wang, Zuo-Jia (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Choi, Jin-Yeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sung, Ill (Advanced Composite Materials Institute, Hankuk Carbon) ;
  • Jin, Dal-Saem (Advanced Composite Materials Institute, Hankuk Carbon) ;
  • Kang, Suk-Won (Advanced Composite Materials Institute, Hankuk Carbon) ;
  • Kim, Jeong-Cheol (Advanced Composite Materials Institute, Hankuk Carbon) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • Received : 2014.03.11
  • Accepted : 2014.07.18
  • Published : 2014.08.31

Abstract

The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through various experiments. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and $T_g$ was conformed according to different epoxy mixing ratio. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.

2개 이상의 에폭시 기지재의 배합비를 이용하여 최적의 에폭시 복합재료를 제조하였다. 이 실험에서 노볼락계 에폭시 및 아이소시아네이트계 에폭시를 기지재로 사용하였다. 그에 따라 화학적 조성의 변화를 이용하여 다양한 실험을 통한 최적의 에폭시 배합비를 유추하였고, 에폭시의 내열성 및 계면을 파악하기 위하여 열중량측정기를 이용하여 유리전이온도의 변화를 파악하였고 정적 접촉각을 측정하였다. 기계적 물성을 파악하기 위하여 에폭시 배합비에 따른 유리섬유/에폭시 복합재료의 인장, 압축, 굴곡강도를 상온에서 및 노화시간에 따라 파악하였다. 에폭시와 유리섬유간 계면을 개념도로 나타냈다. 시험 결과 에폭시 배합비에 따른 적외선 피크 및 유리전이온도 변화를 확인하였다. 서로 다른 에폭시의 배합비가 1:1일 때 기계적물성이 상대적으로 좋은 것을 확인하였다.

Keywords

References

  1. Kwon, D.-J., Wang, Z.-J., Kim, J.-J., Jang, K.-W., and Park, J.-M., "Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement," Journal of the Korean Society for Composite Materials, Vol. 26, No. 6, 2013, pp. 337-342. https://doi.org/10.7234/composres.2013.26.6.337
  2. Pihtili, H., "An Experimental Investigation of Wear of Glass Fibre-epoxy Resin and Glass Fibre-polyester Resin Composite Materials," European Polymer Journal, Vol. 45, 2009, pp. 149-154. https://doi.org/10.1016/j.eurpolymj.2008.10.006
  3. Park, J.-M., Wanga, Z.-J., Jang, J.-H., Gnidakoung, J.R.N., Lee, W.-I., Park, J.-K., and DeVries, K.L., "Interfacial and Hydrophobic Evaluation of Glass Fiber/CNT-epoxy Nanocomposites Using Electro-micromechanical Technique and Wettability Test," Composites: Part A, Vol. 40, 2009, pp. 1722-1731. https://doi.org/10.1016/j.compositesa.2009.08.006
  4. Jeon, K.-W., Shin, K.-B., and Kim, J.-S., "A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application," Journal of Composite Science and Technology, Vol. 23, No. 5, 2010, pp. 22-29. https://doi.org/10.7234/kscm.2010.23.5.022
  5. Sikarwar, R.S., Velmurugan, R., and Gupta, N.K., "Influence of Fiber Orientation and Thickness on the Response of Glass/epoxy Composites Subjected to Impact Loading," Composites: Part B, Vol. 60, 2014, pp. 627-636. https://doi.org/10.1016/j.compositesb.2013.12.023
  6. Hesterberg, T.W., Anderson, R., Bernstein, D.M., Bunn, W.B., Chase, G.A., Jankousky, A.L., Marsh, G.M., and McClellan, R.O., "Product Stewardship and Science: Safe Manufacture and Use of Fiber Glass," Regulatory Toxicology and Pharmacology, Vol. 62, 2012, pp. 257-277. https://doi.org/10.1016/j.yrtph.2012.01.002
  7. Jiang, Z.-H., and Zhang, Q.-Y., "The Structure of Glass: A Phase Equilibrium Diagram Approach," Progress in Materials Science, Vol. 61, 2014, pp. 144-215. https://doi.org/10.1016/j.pmatsci.2013.12.001
  8. Mirza, F.A., Afsar, A.M., Kim, B.S., and Song, J.I., "Recent Developments in Natural Fiber Reinforced Composites," Journal of Composite Science and Technology, Vol. 22, No. 4, 2009, pp. 41-49.
  9. Carra, G., and Carvelli, V., "Ageing of Pultruded Glass Fibre Reinforced Polymer Compsites Exposed to Combined Environmental Agents," Composite Structures, Vol. 108, 2014, pp. 1019-1026. https://doi.org/10.1016/j.compstruct.2013.10.042
  10. Pan, G., Du, Z., Zhang, C., Li, C., Yang, X., and Li, H., "Synthesis, Characterization, and Properties of Novel Novolac Epoxy Resin Containing Naphthalene Moiety," Polymer, Vol. 48, 2007, pp. 3686-3693. https://doi.org/10.1016/j.polymer.2007.04.032
  11. Flores, M., Fernandez-Francos, X., Morancho, J.M., Serra, A., and Ramis, X., "Ytterbium Triflate as a New Catalyst on the Curing of Epoxy-isocyanate Based Thermosets," Thermochimica Acta, Vol. 543, 2012, pp. 188-196. https://doi.org/10.1016/j.tca.2012.05.012
  12. Rahmana, M.M., Zainuddinb, S., Hosur, M.V., Robertsona, C.J., Kumar, A., Trovillion, J., and Jeelani, S., "Effectof $NH_2$-MWCNTs on Crosslink Density of Epoxy Matrix and ILSS Properties of e-glass/epoxy Composites," Composite Structures, Vol. 95, 2013, pp. 213-221. https://doi.org/10.1016/j.compstruct.2012.07.019
  13. Liu, Y.L., "Flame-retardant Epoxy Resins from Novel Phosphorus-containing Novolac," Polymer, Vol. 42, 2001, pp. 3445-3454. https://doi.org/10.1016/S0032-3861(00)00717-5
  14. Dong, C., and Davies, I.J., "Flexural and Tensile Strengths of Unidirectional Hybrid Epoxy Composites Reinforced by S-2 Glass and T700S Carbon Fibres," Materials and Design, Vol. 54, 2014, pp. 955-966. https://doi.org/10.1016/j.matdes.2013.08.087
  15. Baqar, M., Agag, T., Ishida, H., and Qutubuddin, S., "Poly(benzoxazine-co-urethane)s: A New Concept for Phenolic/urethane Copolymers via One-pot Method," Polymer, Vol. 52, 2011, pp. 307-317. https://doi.org/10.1016/j.polymer.2010.11.052
  16. Fu, Y., Liu, H., and Zhonga, W.H., "Wetting Characteristics of Epoxy Resins Modified by Graphitic Nanofibers with Different Functional Groups," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 369, 2010, pp. 196-202. https://doi.org/10.1016/j.colsurfa.2010.08.022
  17. Goddard, J.M., and Hotchkiss, H.H., "Polymer Surface Modification for the Attachment of Bioactive Compounds," Progress in Polymer Science, Vol. 32, 2007, pp. 698-725. https://doi.org/10.1016/j.progpolymsci.2007.04.002
  18. Han, S.-W., Choi, N.-S., Lee, M.-S., and Ahn, H.K., "Wettability Evaluation of Resin on the Glass Fabric," Journal of the Korean Society for Composite Materials, Vol. 24, No. 2, 2011, pp. 30-37. https://doi.org/10.7234/kscm.2011.24.2.030
  19. Park, J.-M., Gu, G.-Y., Wang, Z.-J., Kwon, D.-J., and Lawrence DeVries, K., "Interfacial Durability and Acoustical Properties of Transparent Graphene Nanoplatelets/poly (vinylidene fluoride) Composite Actuators," Thin Solid Films, Vol. 539, 2013, pp. 350-355. https://doi.org/10.1016/j.tsf.2013.05.078
  20. Mansura, A.A.P., Nascimento, O.L., Vasconcelos, W.L., and Mansura, H.S., "Chemical Functionalization of Ceramic Tile Surfaces by Silane Coupling Agents: Polymer Modified Mortar Adhesion Mechanism Implications," Materials Research, Vol. 11, 2008, pp. 293-302. https://doi.org/10.1590/S1516-14392008000300011