• 제목/요약/키워드: Advanced composite materials

검색결과 1,135건 처리시간 0.025초

Characterization of composite prepared with different mixing ratios of TiO2 to activated carbon and their photocatalytic activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Ko, Young-Shin;Oh, Won-Chun
    • 분석과학
    • /
    • 제19권5호
    • /
    • pp.376-382
    • /
    • 2006
  • In this work, pitch/activated carbon/$TiO_2$ composite were prepared by $CCl_4$ solvent method with different mixing ratios. The BET surface area of pitch/activated carbon/$TiO_2$ composite has a significantly increase with increasing activated carbon content in pitch/activated carbon/$TiO_2$ composite. The surface structure and elemental compositions of the composite were studied by SEM and EDX, respectively. The SEM results were presented to the characterization of porous texture on the pitch/activated carbon/$TiO_2$ composite. And EDX data was shown the presence of C, O, S, Ti and other elements. The structural properties of the composite were studied in XRD measurements. The $TiO_2$ crystal phases of the pitch/activated carbon/$TiO_2$ composite had lots of rutile-type structure which transforms from anatase-type with a little of anatase-type structure. The photocatalytic activities of the composite were evaluated using a photo-decomposition method under UV lamp. The pitch/activated carbon/$TiO_2$ composites were observed better photocatalytic activity than that of pristine $TiO_2$.

전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항 (Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition)

  • 박제식;이성형;정구진;이철경
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성 (Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property)

  • 박중남;황성희;김명실;손정국;권순상;부진효;김지만
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.328-332
    • /
    • 2010
  • 본 연구에서는 다이에틸렌글리콜 용매 상에서 공침법을 이용하여 기공성 아연 구형 산화물과 구리-아연 복합 산화물을 합성하였다. 합성된 물질들의 물리화학적 특성은 전자현미경, X-선 회절분석, $N_2$ 흡착, $H_2$-TPR 방법을 통하여 분석되었고, 다양한 Cu 함량(0, 6.6, 21.3 36.4, 54.6, 77.8 wt%)을 포함한 Cu-ZnO 복합 산화물을 고정층 반응 장치에서 일산화탄소 산화 반응성을 고찰하였다. 합성된 산화물 중에서 Cu 함량이 증가할수록 Cu-ZnO의 비표면적과 미세 기공 부피는 감소하였으며, Cu (36.4 wt%)-ZnO이 가장 좋은 일산화탄소 산화 반응성을 나타내었다.

세라믹(BNT)-폴리머(BCB) 복합체의 경화 거동과 유전특성에 대한 연구 (The study on cure behavior and dielectric property of Ceramic (BNT)-Polymer (BCB) composite material)

  • 김운용;전명표;조정호;김병익;명성재;신동욱
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.251-255
    • /
    • 2007
  • 높은 유전상수와 낮은 유전손실을 가지는 $(1-x)BCB-xBNT(BaNd_2Ti_4O_{12})$ (x=20, 30, 40, 50 vol%) 복합 재료를 제작하였다. 제작된 film의 유전 상수와 유전 손실은 1 MHz에서 측정되었고, DSC와 같은 열분석을 통하여 그 경화거동을 관찰하고, BNT의 함량과 film의 경화 거동이 유전특성에 어떠한 영향을 미치는지에 대하여 조사하였다. 충진제로 사용된 BNT가 $20{\sim}50vol%$까지 증가함에 따라 그 복합체의 유전상수는 증가, 유전 손실($tan{\delta}$)은 감소하였고, BCB-BNT 복합체의 유전 상수와 유전 손실($tan{\delta}$)은 경화 반응에 거의 영향을 받지 않는다. 그러나 경화 온도가 증가함에 따라 TCC(Temperature Characteristics of Coefficient)가 감소하는 것으로 복합체의 경화는 $250^{\circ}C$ 이상에서 가장 안정하다는 것을 확인하였다.

W-M(M=Cu, Sn, Ni)계 고밀도 복합재료 제조에 관한 기초연구(I) (A Basic Study on the Fabrication of W-M(M=Cu, Sn, Ni) System High Density Composite (I))

  • 장탁순;홍준희;이태행;구자명;송창빈
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.268-274
    • /
    • 2009
  • For the purpose of obtaining basic information on the development of lead-free materials, a high density composites (a) W-Cu, (b) W-Sn (c)W-Cu-Sn and (d) W-Cu-Ni were fabricated by the P/M method. The particle size of used metal powders were under 325 mesh, inner size of compaction mould was $\phi8$ mm, and compaction pressure was 400 MPa. A High density composite samples were sintered at a temperature between $140^{\circ}C$ and $1050^{\circ}C$ for 1 hour under Ar atmosphere. The microstructure, phase transformation and physical properties of the sintered samples were investigated. As the results, the highest relative density of 95.86% (10.87 g/$cm^3$) was obtained particularly in the sintered W-Cu-Sn ternary system sample sintered at 450 for 1hr. And, Rockwell hardness (HRB) of 70.0 was obtained in this system.

SiCp입자강화 Al 복합재료에 대한 합금원소의 영향과 시효특성에 관한 연구 (A Study on Ageing Characteristics and Alloy Elements of SiCp Reinforced Al Matrix Composites)

  • 김석원;이의종;우기도;김동건
    • 한국주조공학회지
    • /
    • 제21권1호
    • /
    • pp.7-14
    • /
    • 2001
  • The research on new DRA(discontinuous reinforced alloy) and CRA(continous reinforced alloy) composites has been carried out to improve the properties of ceramic fiber and particle reinforced metal matrix composites(MMCs). Effects of alloying elements and aging conditions on the microstructures and aging behavior of Al-Si-Cu-Mg-(Ni)-SiCp composite have been examined. The specimens used in this study were manufactured by duplex process. The first squeeze casting is the process to make precomposite and the second squeeze casting is the process to make final composite. The hardening behavior was accelerated with decreasing the size of SiCp particle in the composites. It is considered that the dislocation density increased with increasing SiCp size, due to the different thermal deformation between Al matrix and SiCp during quenching after the solution treatment. Peak aging time to obtain the maximum hardness in 3 ${\mu}m$ SiCp reinforced Al composite was reduced than that in large size(5, 10 ${\mu}m$) of SiCp because of difference in dislocation density. Aging hardening responce(${\Delta}H$ = $H_{Max}.-H_{S.T}$) of composites was greater than that of unreinforced Al alloy because of higher density of second phases in matrix.

  • PDF

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

설폰화된 폴리설폰/PPSQ 유-무기 복합 전해질막의 수소이온 전도도 및 메탄올 투과 특성 (Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane)

  • 권정돈;이창진;강영구
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.89-93
    • /
    • 2004
  • 설폰화된 폴리설폰 (sulfonated polysulfone, SPSF)과 Poly(phenylmethyl silsequioxane) (PPSQ)의 유무기 복합 전해 질막을 제조하여 이온전도도와 메탄을 투과 특성을 조사하였다 클로로트리메틸실란과 클로로설폰산의 반응 몰비와 반응시간를 변화시켜 설폰화도가 $37\~75\%$인 SPSF를 합성하였다. SPSF/PPSQ복합 전해막은 SPSF와 PPSQ를 DMF에 용해하여 캐스팅하는 방법으로 제조하였다 이 복합 전해질막의 수소 이온 전도도는 상온에서 $2.8\times10^{-3}\~4.9\times10^{-2}S/cm$이었으며 설폰화도가 증가할수록 전도도는 증가하였다. 제조된 설폰화된 폴리설폰 복합 전해질막의 메탄을 투과도는 이온전도도와 설폰화도에 비례하여 증가하였으며, PPSQ의 함량이 커질수록 메탄을 투과도가 비례적으로 감소하는 것을 확인할 수 있었다. 약 $5wt\%$ PPSO론 포함한 복합 전해질막의 이온전도도 및 메탄을 투과도는 SPSF에 비교하여 거의 동일하지만 함수율을 크게 감소시키는데 효과적이었다.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong;Natsuki, Toshiaki;Kurashiki, Ken;Ni, Qing-Qing;Iwamoto, Masaharu;Fujii, Yoshimichi
    • Advanced Composite Materials
    • /
    • 제16권3호
    • /
    • pp.195-206
    • /
    • 2007
  • Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.