• Title/Summary/Keyword: Advanced Planning System

Search Result 349, Processing Time 0.03 seconds

Advanced Planning and Scheduling (APS) System Implementation for Semiconductor Manufacturing : A Case at Korean Semiconductor Manufacturing Company (반도체 제조를 위한 고도화 계획 및 일정 관리 시스템 구축 : 국내 반도체 업체 사례)

  • Lim, Seung-Kil;Shin, Yong-Ho
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.277-287
    • /
    • 2007
  • Semiconductor manufacturing is one of the most complex and capital-intensive processes composed of several hundreds of operations. In today’s competitive business environments, it is more important than ever before to manage manufacturing process effectively to achieve better performances in terms of customer satisfaction and productivity than those of competitors. So, many semiconductor manufacturing companies implement advanced planning and scheduling (APS) system as a management tool for the complex semiconductor manufacturing process. In this study, we explain roles of production planning and scheduling in semiconductor manufacturing and principal factors that make the production planning and scheduling more difficult. We describe the APS system implementation project at Korean semiconductor manufacturing company in terms of key issues with realistic samples.

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

Development of Planning Support System Incorporating Ecological Factors in Urban Planning (환경생태요소를 고려한 계획지원시스템 구축)

  • Jung, Seunghyun;Kim, Hyeonsoo;Kim, Yeonmee
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.75-86
    • /
    • 2013
  • The use of planning support systems in urban planning and management provides objective information that is beneficial in the decision-making stage. The existing planning support system, however, lacks in the consideration of ecological properties. In this study, a planning support system development that is capable of reflecting ecological elements was set as the ultimate goal. This system can support planning processes ranging from ecological potential anaylsis to alternatives designing and stimulation. Additionally, factors such as soil, water, climate, biotope, ecological network and recreation can be handled according to their natural potentials. The establishment and visualization of land use planning that addresses ecological characteristics based on the analyzed results are possible. Therefore, this system could operate as a framework to assist planners and decision makers through a computer-based system to provide useful ecological information and to allow effective decision-making by analyzing, displaying and visualizing ecological spatial data.

A Study on the Process Design of Advanced Planning & Scheduling for Transformer Operation Improvement (변합기 공정 개선을 위한 APS(Advanced Planning & Scheduling) 프로세스 설계에 관한 연구)

  • Hwang, Duk-Hyuong;Nam, Seung-Don;Cho, Young-Wook;Oh, Sun-Il;La, Seoung-Hun;Kang, Kyong-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2012
  • As enterprises, based on the forecast of the customer's demand and collaboration with the suppliers, establish the integrated system directing supply, production, and distribution for the increase of productivity, Thus, this study intends to find the most urgent and critical factors for the improvement of the information system by externalizing factors affecting the operation of information system, suggest the process to improve the relevant functions of information system, and design the process. As a result of the analysis of the previous studies on the improvement of the information system, many studies were conducted on the improvement of ERP and SCM, yet there was no study conducted targeting about APS (Advanced Planning & Scheduling). Thus, this study chose APS as the subject for the design of the process for the improvement for the information system.

SCP-Matrix based shipyard APS design: Application to long-term production plan

  • Nam, SeungHoon;Shen, HuiQiang;Ryu, Cheolho;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.741-761
    • /
    • 2018
  • A shipyard is an Engineer To Order (ETO) company that designs and manufactures new products when orders are placed. Various tasks are concurrently performed, thereby making process management considerably important. It is particularly important to plan and control production activities because production constitutes the largest part of the overall process. Therefore, this study focuses on the development of a production planning system based on an Advanced Planning System (APS). An APS is an integrated planning system that targets supply chain processes in accordance with the principles of hierarchical planning. In this study, a Supply Chain Planning Matrix (SCP-Matrix), which is used as a guideline for APS development, is designed through analysis of shipyard cases. Then, we define the process in detail, starting from long-term production plan as the initial application, and design and implement a long-term production planning system using a component-based development.

System development for establishing shipyard mid-term production plans using backward process-centric simulation

  • Ju, Suheon;Sung, Saenal;Shen, Huiqiang;Jeong, Yong-Kuk;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-37
    • /
    • 2020
  • In this paper, we propose a simulation method based on backward simulation and process-oriented simulation to take into account the characteristics of shipbuilding production, which is an order-based industry with a job shop production environment. The shipyard production planning process was investigated to analyze the detailed process, variables and constraints of mid-term production planning. Backward and process-centric simulation methods were applied to the mid-term production planning process and an improved planning process, which considers the shipbuilding characteristics, was proposed. Based on the problem defined by applying backward process-centric simulation, a system which can conduct Discrete Event Simulation (DES) was developed. The developed mid-term planning system can be linked with the existing shipyard Advanced Planning System (APS). Verification of the system was performed with the actual shipyard mid-term production data for the four ships corresponding to a one-year period.

The Designing of Production Planning Module for Advanced Planning System with Respect to Supply Chain of the Shipbuilding Industry (조선산업의 공급망을 고려한 APS 생산계획 모듈 설계)

  • Nam, Seunghoon;Ju, Su Heon;Ryu, Cheolho;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.353-362
    • /
    • 2016
  • As ships become larger and construction of offshore plants increases recently, the amount of outsourcing has increased accordingly in the shipyard. Consequently, the system integration in terms of SCM (Supply Chain Management) of information and material flows has become much more important. Especially, since the SCM in the shipbuilding industry is operated in accordance with the production planning in connection with design, purchasing and production process which are the main components of the supply chain, the best production plan has to be established over the whole scheduling activities from the long-term planning to the short-term planning. The paper analyzes the characteristics of the SCM and the production planning system and suggests the need and the direction of APS (Advanced Planning System) development specialized in the supply chain management only for shipbuilding industry. Furthermore, propose a new SCP-Matrix (Supply Chain Planning Matrix), which is the basis of the APS development, appropriate for the shipbuilding industry and draw the core function of the APS module for the practical production plan.

A Prototype of Robotic External Fixation System for Surgery of Bone Deformity Correction

  • Kim, Yoon-Hyuk;Joo, Sang-Min;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2448-2450
    • /
    • 2005
  • A robotic external fixation system for the surgery of bone deformity correction was developed to simulate the execution process of mal-unioned femur by the adjustment of the joints of the fixation system. An inverse kinematics analysis algorithm was developed to calculate the necessary rotations and translations at each joint of the robotic system. The computer graphic model was developed for validation of the analysis result and visualization of the surgical process. For given rotational and angular deformity case, the surgical execution process using the robotic system was well matched with the pre-operative planning. The final residual rotational deformities were within $1.0^{\circ}{\sim}1.6^{\circ}$ after surgical correction process. The presented robotic system with computer-aided planning can be useful for knowledge-based fracture treatment and bone deformity correction under external fixation.

  • PDF

Development of production planning system for shipbuilding using component-based development framework

  • Cho, Sungwon;Lee, Jong Moo;Woo, Jong Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.405-430
    • /
    • 2021
  • Production planning is a key part of production management of manufacturing enterprises. Since computerization began, modern production planning has been developed starting with Material Requirement Planning (MRP), and today Enterprise Resource Planning (ERP), Advanced Planning and Scheduling (APS), Supply Chain Management (SCM) has been spreading and advanced. However, in the shipbuilding field, rather than applying these general-purpose production planning methodologies, in most cases, each shipyard has developed its own production planning system. This is because the applications of general-purpose production planning methods are limited due to the order-taking industry such as shipbuilding with highly complicated construction process consisting of millions of parts per ship. This study introduces the design and development of the production planning system reflecting the production environment of heavy shipyards in Korea. Since Korean shipyards such as Hyundai, Daewoo and Samsung build more than 10 ships per year (50-70 ships in the case of large shipyards), a planning system for the mixed production with complex construction processes is required. This study draws requirements using PI/BPR (process innovation and business process reengineering) methodology to develop a production planning system for shipyards that simultaneously build several ships. Then, CBD software development methodology was applied for the design and implementation of planning system with drawn requirements. It is expected that the systematic development procedure as well as the requirements and functional elements for the development of the shipyard production planning system introduced in this study will be able to present important guidelines in the related research field of shipbuilding management.

Advanced Planning System: A Prerequisite for Achieving Build-to-Order Environment (주문생산에 필수적인 진보적 생산계획 시스템)

  • 강윤식;이휘재;문광원;노성관;임헌욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.93-96
    • /
    • 2002
  • The manufacturing paradigm has shifted dramatically over the past decade from “push” or mass production mode to “pull” or customer-driven, order-based manufacturing mode, as multitudes of customers now demand mass customization of configurable products. As a means to achieve such rapidly responsive manufacturing system, Advanced Planning System (APS) has become an essential software tool for achieving modern “build-to-order” and “configure-to-order” manufacturing environment. APS enables manufacturers to respond to variety of customer demands In real time by instantly configuring manufacturing processes based on specifications described in each purchase orders and providing capable-to-promise information directly to customer by performing rapid “what-if” manufacturing simulated scenarios. This paper discusses the working of such system as well as the business processes that incorporate such systems to enable efficient “build-to-order” environment.

  • PDF