AVM(Around View Monitor)시스템은 ADAS(Advanced Driver Assistance Systems)의 한 종류로 운전자가 차량 주변을 한눈에 파악할 수 있게 도와주는 차량 시스템이다. AVM 시스템은 네 개의 카메라에서 입력받은 데이터를 실시간 처리하기 때문에 요구되는 메모리 대역폭이 크다. 특히 입력 영상의 해상도 증가에 따라 메모리 대역폭 수치가 크게 증가하기 때문에, 필요한 메모리 대역폭에 맞는 하드웨어 구조 설계가 필요하다. 본 논문은 설계에 기틀이 될 AVM 시스템 하드웨어 모델 네 종류를 제시한다. 각 모델은 입력 영상으로부터 유효 데이터를 추출하는 모듈의 유무, 영상처리를 위한 LUT 생성 모듈 유무로 결정된다. 논문에서는 모델 별로 상이한 필요 메모리 대역폭과 하드웨어 자원 사용량이 제시된다. 이를 토대로 설계자의 요구 사항에 맞는 모델을 선택하고 구현할 수 있다. 제시한 하드웨어 모델의 검증을 위해 VGA, FHD급 AVM 시스템을 구현하였다. 구현에는 XC7Z045 FPGA, DDR3가 이용되었으며, 30FPS로 동작한다.
한국도로교통공단은 교통사고분석시스템(TAAS)을 활용하여 2015년부터 발생한 교통사고 원인을 분석한 통계를 제공하고 있다. 교통사고 발생 주요 원인으로, 2018년 한해 전체 교통사고 발생원인 중 전방주시 부주의가 대부분의 원인임을 TAAS를 통해 발표했다. 교통사고 원인에 대한 통계자료의 세부항목으로 운전 중 스마트폰 사용, DMB 시청 등의 안전운전 불이행 51.2%와 안전거리 미확보 14%, 보행자 보호의무 위반 3.6% 등으로, 전체적으로 68.8%의 비율을 보여준다. 본 논문에서는 Deep Learning의 알고리듬 중 CNN(Convolutional Neural Network)를 활용하여 첨단 운전자 보조 시스템 ADAS(Advanced Driver Assistance Systems)을 개선한 시스템을 제안하고자 한다. 제안된 시스템은 영상처리에 주로 사용되는 Conv2D 기법을 사용하여 운전자의 얼굴과 눈동자의 조향을 분류하는 모델을 학습하고, 차량 전방에 부착된 카메라로 자동차의 주변 object를 인지 및 검출하여 주행환경을 인지한다. 그 후, 학습된 시선 조향모델과 주행환경 데이터를 사용하여 운전자의 시선과 주행환경에 따라, 위험요소를 3단계로 분류하고 검출하여 운전자의 전방 및 사각지대 보조한다.
교통사고 통계에 따르면 비보호 구역 내 도로에서 발생하는 교통사고 발생률이 일반 도로보다 30% 높은 수준임이 밝혀졌다. 기존 첨단 운전자 지원 시스템(ADAS: Advanced Driver Assistance Systems)은 다양한 사고 시나리오가 존재하는 비보호 구역에 적용하기에는 한계가 있다. 본 논문은 이러한 문제에 대응하기 위해 기존 ADAS 기능을 확장하여 예측과 판단이 어려운 비보호 구역에서 AI 분석을 통해 운전자에게 주행 가능 여부를 시각적으로 제공하는 시스템을 개발하고자 한다. 이 시스템은 운전자에게 경고와 지원을 제공함으로써 비보호 구역 내 교통사고를 예방할 수 있다.
Lane Keeping Assistance System(LKAS) is a kind of Advanced Driver Assistance Systems(ADAS) which are developed to automate/ adapt/ enhance vehicle systems for safety and better driving. The main system function of LKAS is to support the driver in keeping the vehicle within the current lane. LKAS acquires information on the position of the vehicle within the lane and, when required, sends commands to actuators to influence the lateral movement of the vehicle. Recently, the vehicles equipped with LKAS are commercially available in a few vehicle-advanced countries and the installation of LKAS increases for safety enhancement. The test procedures for LKAS evaluations are being discussed and developed in international committees such as ISO(the International Organization for Standardization). In Korea, the evaluations of LKAS for vehicle safety are planned to be introduced in 2016 KNCAP(Korean New Car Assessment Program). Therefore, the test procedures of LKAS suitable for domestic road and traffic conditions, which accommodate international standards, should be developed. In this paper, some bullet points of the test procedures for LKAS are discussed by extensive researches of previous documents and reports, which are released in public in regard to lateral test procedures including LKAS and Lane Departure Warning System(LDWS). Later, it can be helpful to make a draft considering domestic traffic situations for test procedures of LKAS.
버스운전자의 안전운행을 확보하기 위해서는 운전자 교통사고 원인 등을 분석해 안전운행을 지원 할 수 있는 정책이 뒷받침되어야 한다. 따라서 국토교통부는 사업용 차량에 운전자를 보조하는 첨단 운전자지원시스템 중 전방충돌경고장치, 차선이탈경고장치의 장착의무대상을 단계적으로 확대하는 방안을 마련한 바 있다. 그러나 버스운전자 교통사고분석과 관련된 기초 연구는 국내에서 많이 수행되고 있지 않아, 버스사고예방을 위하여 향후 버스운전자에게 가장 필요한 첨단 운전자지원시스템이 무엇인지에 대한 연구가 필요한 시점이다. 본 연구에서는 버스유형 및 반복사고 여부별 사고심각도를 분석하고 개선방안으로 버스의 첨단 운전자지원시스템 지원 방향을 제시하는데 목적이 있다. 사고심각도 분석은 순서형 로짓 모형을 이용해 분석하였으며 분석결과, 차대사람사고는 모든 모형에서 통계적으로 유의미하게 선정되었고 법규위반항목의 속도위반, 신호위반, 승객을 위한 안전조치위반이 제안된 모형에서 공통적으로 선정되었다. 따라서 향후 버스 대 사람사고를 감소시킬 수 있는 보행자감지시스템, 보행자 자동긴급제어장치의 설치가 반드시 필요하다.
교통사고의 원인 중 90%는 졸음운전과 같은 운전자의 부주의 때문에 발생하고 있다. 정부에서도 사고로 인한 인명피해 심각성을 인지하고 2019년부터 전방충돌방지 시스템과 차선이탈 경고 장치 등 ADAS(Advanced Driver Assistance Systems)를 의무적으로 적용하도록 규제를 강화하는 추세이다. 충돌사고를 예방하기 위해 본 논문에서는 영상처리를 기반으로 하여 객체 검출, 차간거리 측정, 후미등 검출, 차선 검출 기능을 적용하여 위험한 상황을 감지하고 운전자에게 경고 알림을 제공하는 System을 개발한다. 더 나아가 다양한 모빌리티 서비스에 이를 활용할 수 있는 방안을 제공한다.
ADAS (Advanced Driver Assistance Systems) requires not only real-time robust lane detection, both straight and curved, but also predicting upcoming steering direction by detecting the curvature of lanes. In this paper, a curvature lane detection algorithm is proposed to enhance the accuracy and detection rate based on using inverse perspective images and Gaussian Mixture Model (GMM) to segment the lanes from the background under various illumination condition. To increase the speed and accuracy of the lane detection, this paper used template matching, RANSAC and proposed post processing method. Through experiments, it is validated that the proposed algorithm can detect both straight and curved lanes as well as predicting the upcoming direction with 92.95% of detection accuracy and 50fps speed.
최근 딥 러닝을 중심으로 빠르게 발전하고 있는 기계학습 분류 알고리즘은 기존의 방법들보다 뛰어난 성능으로 인하여 주목받고 있다. 딥 러닝 중에서도 Convolutional Neural Network(CNN)는 영상처리에 뛰어나 첨단 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)에서 많이 사용되고 있는 추세이다. 하지만 차량용 임베디드 환경에서 CNN을 소프트웨어로 동작시켰을 때는 각 Layer마다 연산이 반복되는 알고리즘의 특성으로 인해 수행시간이 길어져 실시간 처리가 어렵다. 본 논문에서는 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조를 제안한다. 제안하는 하드웨어의 성능을 검증하기 위하여 Xilinx ZC706 FPGA 보드를 이용하였다. 입력 영상은 $36{\times}36$ 크기이며, 동작주파수 100MHz에서 하드웨어 수행시간은 약 2.812ms로 실시간 처리가 가능함을 확인했다.
최근 운전자의 편의와 안전을 위해 전방 차량 추돌 감지 시스템(Front Collision Warning System : FCWS)과 같은 다양한 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)이 개발되고 있다. FCWS는 주행 중 실시간으로 동작해야 하기 때문에 높은 처리속도를 필요로 한다. 또한 자동차의 전장화에 따라 FCWS를 차량용 임베디드 시스템에서 동작시키기 위해 저전력 시스템이 필요하다. 본 논문에서는 FCWS를 CPU-FPGA 구조에서 실시간 처리가 가능하도록 구현하였다. 차선 검출은 Inverse Transform Perspective(IPM)와 슬라이딩 윈도우 방식을 이용하여 CPU에서도 빠른 속도로 동작할 수 있도록 하였다. 차량검출은 높은 인식률을 가지는 Convolutional Neural Network(CNN)을 이용하였고, FPGA에서 병렬처리로 가속하였다. 제안하는 구조는 저전력으로 동작하는 ARM-Core A9과 FPGA를 내장한 Intel FPGA Cyclone V SoC(System on Chip)에서 검증하였다. HD해상도에서 FCWS는 44FPS로 실시간으로 동작하며, 고성능 PC 환경보다 처리속도 대비 에너지 효율이 약 3.33배 높은 것을 확인했다.
This paper addresses the effective and quantitative image DB construction for the development of front looking camera systems. The automotive industry has expanded the capability of front camera solutions that will help ADAS(Advanced Driver Assistance System) applications targeting Euro NCAP function requirements. These safety functions include AEB(Autonomous Emergency Braking), TSR(Traffic Signal Recognition), LDW(Lane Departure Warning) and FCW(Forward Collision Warning). In order to guarantee real road safety performance, the driving image DB logged under various real road conditions should be used to train core object classifiers and verify the function performance of the camera system. However, the driving image DB would entail an invalid and time consuming task without proper guidelines. The standard working procedures and design factors required for each step to build an effective image DB for reliable automotive front looking camera systems are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.