A musical sheet is read by optical music recognition (OMR) systems that automatically recognize and reconstruct the read data to convert them into a machine-readable format such as XML so that the music can be played. This process, however, is very challenging due to the large variety of musical styles, symbol notation, and other distortions. In this paper, we present a model for the recognition of musical symbols through the use of a mobile application, whereby a camera is used to capture the input image; therefore, additional difficulties arise due to variations of the illumination and distortions. For our proposed model, we first generate a line adjacency graph (LAG) to remove the staff lines and to perform primitive detection. After symbol segmentation using the primitive information, we use a covariance-matching method to estimate the similarity between every symbol and pre-defined templates. This method generates the three hypotheses with the highest scores for likelihood measurement. We also add a global consistency (time measurements) to verify the three hypotheses in accordance with the structure of the musical sheets; one of the three hypotheses is chosen through a final decision. The results of the experiment show that our proposed method leads to promising results.
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.8-16
/
2021
The tourism industry is influenced by a large number of factors that affect the development scenarios of the tourism in different ways. At the same time, tourism is an important component of the national economy of any state, forms its image, investment attractiveness, is a source of income and a stimulus for business development. The aim of the article is to conduct an empirical study to identify the importance of cognitive determinants in the development of tourism. The study used general and special methods: systems analysis, synthesis, grouping, systematization, cognitive modeling, cognitive map, pulse method, predictive extrapolation. Target factors, indicators, and control factors influencing the development of tourism in Ukraine are determined and a cognitive model is built, which graphically reflects the nature of the influence of these factors. Four main scenarios of the Ukrainian tourism industry are established on the basis of creating a matrix of adjacency of an oriented graph and forecast modeling based on a scenario approach. The practical significance of the obtained results lies in the possibility of their use to forecast the prospects of tourism development in Ukraine, the definition of state policy to support the industry that will promote international and domestic tourism.
In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.
The numbers of SNS (Social Network Service) users and usage amounts are increasing every year. The influence of SNS is increasing also. SNS has a wide range of influences from daily decision-making to corporate management activities. Therefore, proper analysis of SNS can be a very meaningful work, and many studies are making a lot of effort to look into various activities and relationships in SNS. In this study, we analyze the SNS following relationships using Twitter, one of the representative SNS services. In other words, unlike the existing SNS analysis, our intention is to analyze the interests of the accounts by extracting and visualizing the accounts that two accounts follow in common. For this, a common following account was extracted using Microsoft Excel macros, and the relationship between the extracted accounts was defined using an adjacency matrix. In addition, to facilitate the analysis of the following relationships, a direction graph was used for visualization, and R programming was used for such visualization.
The Journal of the Korea institute of electronic communication sciences
/
v.7
no.4
/
pp.721-726
/
2012
In this paper, we proposed an efficient algorithm based on SPFA(shortest path faster algorithm), which is an improved the Bellman-Ford algorithm. The Bellman-Ford algorithm can be used on graphs with negative edge weights unlike Dijkstra's algorithm. And SPFA algorithm used a queue to store the nodes, to avoid redundancy, though the Bellman-Ford algorithm takes a long time to update the nodes table. In this improved algorithm, an adjacency list is also used to store each vertex of the graph, applying dynamic optimal approach. And a queue is used to store the data. The improved algorithm can find the optimal path by continuous relaxation operation to the new node. Simulations to compare the efficiencies for Dijkstra's algorithm, SPFA algorithm and improved Bellman-Ford were taken. The result shows that Dijkstra's algorithm, SPFA algorithm have almost same efficiency on the random graphs, the improved algorithm, although the improved algorithm is not desirable, on grid maps the proposed algorithm is very efficient. The proposed algorithm has reduced two-third times processing time than SPFA algorithm.
In this paper, we propose a semi-automatic 3D building reconstruction method using uncalibrated images which includes the facade of target building. First, we extract feature points in all images and find corresponding points between each pair of images. Second, we extract lines on each image and estimate the vanishing points. Extracted lines are grouped with respect to their corresponding vanishing points. The adjacency graph is used to organize the image sequence based on the number of corresponding points between image pairs and camera calibration is performed. The initial solid model can be generated by some user interactions using grouped lines and camera pose information. From initial solid model, a detailed building model is reconstructed by a combination of predefined basic Euler operators on half-edge data structure. Automatically computed geometric information is visualized to help user's interaction during the detail modeling process. The proposed system allow the user to get a 3D building model with less user interaction by augmenting various automatically generated geometric information.
In this paper, a rate-distortion based image segmentation algorithm is presented using a recursive merging with region adjacency graph (RAG). In the method, the dissimilarity between a pair of adjacent regions is represented as a Lagrangian cost function considered in rate-distortion sense. Lagrangian multiplier is estimated in each merging step, a pair of adjacent regions whose cost is minimal is searched and then the pair of regions are merged into a new region. The merging step is recursively performed until some termination criterion is reached. The proposed method thus is suitable for region-based coding or segmented-based coding. Experiment results for 256x256 Lena show that segmented-based coding using the proposed method yields PSNR improvement of about 2.5 - 3.5 dB. 0.8 -1.0 dB. 0.3 -0.6 dB over mean-difference-based method. distortion-based method, and JPEG, respectively.
This paper presents a computational model on the transfer of airborne fine particles to analyze the similarities and influences among the 25 districts in Seoul by quantifying a time series data collected from each district. The properties of each district are driven with the model of a time series of the fine particle concentrations, and the calculation of edge-based weights are carried out with the transfer entropies between all pairs of the districts. We applied a modularity-based graph clustering technique to detect the communities among the 25 districts. The result indicates the discovered clusters correspond to a high transfer-entropy group among the communities with geographical adjacency or high in-between traffic volumes. We believe that this approach can be further extended to the discovery of significant flows of other indicators causing environmental pollution.
Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.