= 3T —
SPFAE 7]Hto g2 JjxgE Wrkyc dyug|s
A% - ABFT
An improved Bellman-Ford algorithm based on SPFA

Hao Chen’ - Hee-Jong Suh”

o OoF
5

o

| =%olA SPFA(shortest path faster algorithm)< AM&3jA 7]&¢] #vk-3 = (Bellman- Ford)% 7N

2 Ag
849 QIES AR - GueEe GreekDikstra) GAEN A $O AFAE
2 2dEAA AT 5 ATk SPRA FRAEE #)9S o)gde] wES xww a4 FEe
P & Gk WE-EE FRIEE NS O Agdtel == EE AUIES Atk o] A FaelEoA
£ o B2ES olgstel B 24 wtE AU F U19S Fool dolEF ATk AN By
= ARE Aol A% relaxation Fstel A4 Aa% AL 4 qlrh P ue By SPRA el 53
AR daegel B uwsty] gaA Aol i stk 48 A3elA] W random) e ol)
A¥ A S, SPRA A5 Yasd 2nEL mgo] waA, A48 Axelx AN Lnas
o mgol o Btk AeAIA MR A EL SPRA GaE wrk 389 28 Bt
ABSTRACT

In this paper, we proposed an efficient algorithm based on SPFA(shortest path faster algorithm), which is an improved the
Bellman-Ford algorithm. The Bellman-Ford algorithm can be used on graphs with negative edge weights unlike Dijkstra’s algorithm.
And SPFA algorithm used a queue to store the nodes, to avoid redundancy, though the Bellman-Ford algorithm takes a long time
to update the nodes table. In this improved algorithm, an adjacency list is also used to store each vertex of the graph, applying
dynamic optimal approach. And a queue is used to store the data. The improved algorithm can find the optimal path by continuous
relaxation operation to the new node. Simulations to compare the efficiencies for Dijkstra’s algorithm, SPFA algorithm and
improved Bellman-Ford were taken. The result shows that Dijkstra’s algorithm, SPFA algorithm have almost same efficiency on the
random graphs, the improved algorithm, although the improved algorithm is not desirable, on grid maps the proposed algorithm is
very efficient. The proposed algorithm has reduced two-third times processing time than SPFA algorithm.

IHE
SPFA, Bellman-Ford, Shortest path problem, Routing
SPFA, Witk-x = o A7 &4, &%

| . Introduction of its constituent edges, and has been very

important in computer, communication and trans-

The shortest path search in a graph is studying portation network. etc, as the shortest path routing.
for long time to minimize the sum of the weights In a packet switching network, the primary function

« Mgt etm ™ ALS A3 &tk (chenhaock @ hotmail.com) o M Et . M AS Al S &2 hjsuh@jnu.ac.kr)
&=L Xl 2012, 06. 21 AAHFHE)L XL : 2012. 07. 26 A EH AR - 2012, 08. 09

721

T AAEA L E = A AT A4S

1S to accept packets from a source station and
deliver them to a destination station through the
path. Routing consists of two basic tasks. The first
task is to collect the state information and keep it
The
satisfactory path for a new connection based on the

up-to—date. second task is to find a

collected information[1]. Most least cost routing
algorithms used in the networks and Internet are
variation of one of two algorithms, known as
Dijkstra’s algorithm and Bellman-Ford algorithm(2].

The Bellman-Ford algorithm solves the shortest
path problem, together with the Dijkstra’s algo-
rithm. This algorithm is less restrictive condition on
the graph, compared to Dijkstra’s algorithm. And,
the time complexity of the Bellman-Ford is O{ VE),
and the time complexity of Dijkstra’s algorithm is
0(V2), where V and E are the number of vertices
and edges respectively[3]. To improve solving this
problem, the SPFA (shortest path faster algorithm)
had been proposed, but it was an improved
Bellman-Ford algorithm[4]. Its time complexity is
O(kE), where k is a constant. In sparse graph, the
time complexity of SPFA algorithm is far less
0(V2). But this algorithm requires more time in
order to move the new nodes.

In this paper, a relaxation method is used for the
new node, and the implementation of algorithm has
been continuously iterated. And an optimized SPFA
algorithm is proposed. The result of the experiment
shows that the proposed algorithm has better
performance, than SPFA algorithm and Dijkstra’s
algorithm.

In Chapter IO, SPFA algorithm is explained. In
Chapter III there is an optimized SPFA algorithm
by improving the search method. In Chapter IV,
there are the comparisons of the proposed algorithm
with SPFA and Dijkstra’s algorithm by expe-
riments. Chapter V provides conclusions. Next is

references.

722

Il. Related Algorithm

In a digraph G=(V,E), a set L is used to
denote the adjacency list of the. The weight of
each edge I(v,k) is used to establish the adjacency
list L.

An array set D store the current value of the
shortest path from the source node to the remaining
nodes. Each element of the array D is initialized to
maximum value. After running SPFA algorithm, the
set D output the shortest path value of each node.

The graph for SPFA algorithm is expressed as
an adjacency list, and to search the shortest path a
dynamic optimal approach is applied. A FIFO queue
1s used to store the vertex to be optimized. When
optimization, a node w is removed from the queue,
and a current path D[w] with the node w is used
to optimize the value of path D[j] with another
node j. If adjusted, the value of the D[j] will be
getting smaller, the node j will be added to the
queue to be further optimized. Repeatedly the nodes
from the queue is removed to optimize the current
shortest path. Until the
re-optimization will be done though searching a

queue 1S empty,
unnecessary shortest path. At that time, array D
has stored the value of the shortest path from the
source node to the other nodes.

SPFA algorithm:

for each v in V do

begin
for each k€ L[v] do read (I(v,k));

Read the weight of each edge to the adjacency

list.

QMv] == 0;

Initialize each vertex whether the flag array into
the queue.

Dlv]:= MAX;

Initialize the shortest path array to the maximum

SPFAE 7|Wo 2 Jjxe wgk-y = dugls

value.
end;

Queue<u;

Qﬂﬂvu] =1;
The source node v, into the queue.
D[vy]|:=0;

From the source node to itself, the value is zero.
while Queue not empty do
begin

w<—Queue;
Removed a node w from the queue.
QMiw] :==0;

After a node w 1is removed, its flag array
instead of zero. It means the node w is not in the
queue.
for each jE€L[w] do
if D[j]> D[w]+1(w,j) then
begin
Dljl == Dlw]+1(w,j)

Judge the path from the node w to the node j is
shorter than the original path, optimize the path
with node j.

if QM{j]=0 then
begin

Queue<—ry;
QMljl=1;

When the node j is node in the queue, the flag
of QM]j] instead of one. It means is the node j is
in the queue.

end
end
end;

for each v in V do

begin
write Dvl;
end;

Optimization is complete, the array D is stored
the shortest path that from the source node to each
node. The result will be output.

end.
End of the algorithm.

The time complexity of SPFA algorithm is
O(kE), where k is a constant. First in initialization
of SPFA algorithm the weight of each edge is read.
In this case there will be a time complexity is
O(E). The sum of out-degree of the vertexes V is
the edges F. For one node, the average out-degree

is TE/ Execution time is O(TE/) Set the number of

vertices that is added the queue m, the average of
each node is added the queue once, m =n; the
average of each node is added to the queue twice,
m=2n. m 1S a constant, it has noting to do with
F and V. So the time complexity of SPFA
algorithm is 7= O(kE).

relaxed

11-3‘11—4‘ ------ ‘5‘4‘3‘2‘1|

|11 n-1|n-2

New

n-4

n-1 | n-2 | n-3 4 ‘ 3 ‘ 2 ‘

P i il R el AR

Fig. 1 Search method of SPFA algorithm

SPFA algorithm uses a FIFO queue to store the
nodes. A node is removed from the first of the
queue. The node is relaxed successfully, a new
node will be added at the end of the queue to be
further optimized. Repeatedly the node is removed
to optimize the current shortest path, until the
queue 1s empty. Fig.l shows search method of
SPFA algorithm.

[ll. Improving the Search Method

723

T AAEA L E = A AT A4S

The data structure of the proposed algorithm also
uses adjacency list as SPFA algorithm. In our
list structure
significantly to save memory space and reduce sea-

algorithm, an adjacency is used
rching time[5].

An important property is the triangle inequality.
Set G=(V,E) is a digraph with weights. a node s
is the source node, and for any node t, d(s,t) is
the shortest path that from s to ¢. For all edges
(u,v) EE, d(s,v)< d(s,u)+w(u,v) is a sufficient
and necessary condition for d(s,t) for the shortest
path from s to t.

The proposed algorithm uses relaxation operation.
First set f(u) is the shortest path of node w.
Assignment f(s)=0, f(u)=+oco (u = s). Then,

For (u,v)EE, Relax (u,v)

If f(v)> flu)+w(uv), fo)=flu)+wu,v)

It means that if each edge do not satisfies the
triangle inequality, the destination node will be
re-assigned.

The essential of relaxation operation is an search
constantly looking for conflicting between current
state and target state. Adjustment of status is done
until no conflicting. After that time, the optimal
state is reached.

If the Bellman-Ford algorithm is used, actually
only one node is updated with each iteration, and
other loops are invalid. The Bellman-Ford algorithm
is inefficiency, because there are a lot of
unnecessary operations. It is only when the node is
updated in the last iteration that will be useful for
current iteration. The proposed algorithm takes
advantage of storage, using the queue optimization.
Its key is to store useful state only.

When the queue extent a new node, it is added
at the end of the queue. The iteration is continued.
This process required more time in order to move
the new nodes. In order to relax the new node, an
implementation of the algorithm can have an

iterated.

724

relaxed

n-2

n-4

‘ n [n-1 n-3

New
relaxed
node

Fig. 2 Improving the search method of SPFA
algorithm.

Fig. 2. shows improving the search method of
SPFA algorithm. The method that begin at the first
node. By the improved algorithm, the node 1 is first
removed from the queue. After the node is relaxed
successfully, and a new node will be searched
directly. All nodes are relaxed, until the queue is

empty.

IV. Results of Experiment

To verify our idea, experiments were taken on
large amounts of data. First, the experiment of
Dijkstra’s
graphs with only non-negative edge weights. So in

random maps. algorithm solves the
the case of negative edge weights, there is a
comparison of the proposed algorithm with SPFA.
In the case of non—negative edge weights, there is
a comparison of the proposed algorithm with SPFA

and Dijkstra’s algorithms.

9000

—-&—SPFA i ! ! !

8000 Proposed algorithm o ____1_/|
— B - Dikstra® : : : :
7000 -~ -4+ - - -——F—-—4—-———-——F— >+ —-—
| | | | | |

I
|
|

|
6000 — -l — — I L1 [
|
|

50004 — — -~ —————— = ———— £~~~
\ 7 i 7)\/
I I I

Times(ms)

i
|

4000———+<— <t --4
| I | A

3000———i———x—t——i——————/ﬁ——i——f
| | | | %/\ |

PN I S S S B . LA R B
T | i T i i T
| | | 1 | |

00— -+ - —————F -+ /f--———F-—+t-—-7
| | | 17 | |
0 I I I W I I I

2 15 1 0.5 0 05 1 15 2

Edges X 105

Fig. 3 Comparison of three algorithms (SPFA
algorithm, the proposed algorithm and Dijkstra’'s
algorithm) on random data.

SPFAE 7|Wo 2 Jjxe wgk-y = dugls

As shown in Fig. 3, when the size of the graphs
module is randomly generated, the proposed alg-
orithm is not desirable, because it will keep iterated
if a graph is great depth. It does too many times
to iterate. SPFA and Dijkstra’s algorithms have
almost same efficiency.

Grid map is widely used because it is easy to
build and maintain without definite geometric
parameters.[6] Keeping iterated is characteristic of
the proposed algorithm. Consequently, it is used on
grid maps.

x10°

2.5 - T — -
—&— SPFA ! ! ! ! !
| | | |
Pi d algorith
roposed algorithm | | | | | A
| | | | | | | |
2”7”7”F’T”T”F’T”T’;ﬁé’
| | | | | | | |
| | | | | | | ///\
| | | | | | | |
P i B Sl i TT T T R
2
E | | | | | | | | |
2 | | | | | | | | |
E | | | | \4/4 | | |
L i et el e A e
		V/ﬂ				
05 — —l— =+ -~ — = -+ = ———d— =+~ —						
			I T			
\/%/ | |] I | | |
I T | | | | |
o I 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Edges X 105

Fig. 4 Comparison of two algorithms (SPFA algorithm,
the proposed algorithm) on grid maps.

In Fig. 4, we can see clearly the relationship
between the proposed and SPFA algorithms. In
both case, SPFA algorithm takes 31048 milliseconds,
the proposed algorithm only takes 8898 milliseconds
that reduced two-third in time consumption. We
used Intel P7350 2.00 GHz, window 7(32 bits).

V. Conclusions

The experimental results show that SPFA
algorithm and Dijkstra’ algorithm have almost same
efficiency on the random graphs(Fig. 3). But on
grid maps the proposed algorithm is very efficient.
As shown in Fig. 4, SPFA algorithm takes 31048
milliseconds, the proposed algorithm only takes 8398

that reduced two-third in time

consumption. So the proposed algorithm is more

milliseconds

effective on grid maps.

We could see that on grid maps the proposed
algorithm is very efficient, and the proposed algo—
rithm than SPFA algorithm reduced two-third in
time consumption by Matlab. This may broaden the
development space for the proposed algorithm in the
future.

References

[1] X8%E, AT EAZAA ALdE B2 QoS
daE)E, "FHAATAANI=EA, 7H, 13,
pp- 53-60, 2012.

[2] William. Stallings, "Data and Computer Com-
munications Eighth edition," Pearson Edu-
cation International, pp. 332-347, 2007.

[3] George T. Heineman, "Algorithm in a
Nutshell," O'Reilly Media, pp. 322, Oct. 2008.

[4] Duan. Fangding, "A Faster Algorithm for
Shortest Path-SPFA," Journal of Southwest
JJAOTONG University, Vol. 29, No. 6, pp.
207-212, Apr. 1994.

[5] Gao. Yang, "An Improved Shortest Route Alg-
orithm in Vehicle Navigation System," Inte-
rnational Conference on Advanced Computer
Theory and Engineering (ICACTE), Vol. 2, pp.
363-366, Aug. 1996.

[6] Wang. Kun, "Simultaneous Localization and
Map Building Based on Improved Particle
Filter in Grid Map," International Conference
on Electronic and Mechanical Engineering and
Information Technology, Vol. 2, pp. 963-966,
Aug. 2011.

XA 274

725

2 ATA A5

Z(Hee-Jong Suh)

M3

S

~—
'

=
50
Nfo
T
Nel
)

=
=

Ho
—_

oL oEke] Az

s}k
=

726

