
SPFA를 기반으로 개선된 벨만-포드 알고리듬

 721

SPFA를 기반으로 개선된 벨만-포드 알고리듬

진호*․서희종**

An improved Bellman-Ford algorithm based on SPFA

Hao Chen*․Hee-Jong Suh**

요 약

이 논문에서 SPFA(shortest path faster algorithm)을 사용해서 기존의 벨만-포드(Bellman-Ford)을 개선한

효율적인 알고리듬을 제안한다. 벨만-포드 알고리듬은 딕스트라(Dijkstra) 알고리듬과 다르게 부(-)인 가중치를

갖는 그래프에서 사용할 수 있다. SPFA 알고리듬은 한 대기열을 이용하여 노드를 저장한다. 그래서 중북을

피할 수 있다. 벨만-포드 알고리듬은 시간을 더 사용하여 노드 표를 업데이트를 시킨다. 이 개산 알고리듬에서

는 인접 리스트를 이용하여 표의 각 노드를 저장한다. 한 대기열을 통하여 데이트를 저장한다. 개선 방법에서

는 새로운 점에 계속 relaxation을 통하여 최적 패스를 얻을 수 있다. 딕스트라 알고리듬과 SPFA 알고리듬과

개선된 알고리듬의 성능을 비교하기 위해서 시뮬레이션을 하였다. 실험 결과에서 랜덤(random) 그래프에서 개

선된 알고리듬, SPFA 알고리듬과 딕스트라 알고리듬은 효율이 비슷했었는데, 격자형 지도에서 개선 알고리듬

의 효율이 더 높았었다. 처리시간에서 개선된 알고리듬은 SPFA 알고리듬 보다 3분의 2를 감소시켰다.

ABSTRACT

In this paper, we proposed an efficient algorithm based on SPFA(shortest path faster algorithm), which is an improved the

Bellman-Ford algorithm. The Bellman-Ford algorithm can be used on graphs with negative edge weights unlike Dijkstra's algorithm.

And SPFA algorithm used a queue to store the nodes, to avoid redundancy, though the Bellman-Ford algorithm takes a long time

to update the nodes table. In this improved algorithm, an adjacency list is also used to store each vertex of the graph, applying

dynamic optimal approach. And a queue is used to store the data. The improved algorithm can find the optimal path by continuous

relaxation operation to the new node. Simulations to compare the efficiencies for Dijkstra's algorithm, SPFA algorithm and

improved Bellman-Ford were taken. The result shows that Dijkstra's algorithm, SPFA algorithm have almost same efficiency on the

random graphs, the improved algorithm, although the improved algorithm is not desirable, on grid maps the proposed algorithm is

very efficient. The proposed algorithm has reduced two-third times processing time than SPFA algorithm.

키워드

SPFA, Bellman-Ford, Shortest path problem, Routing

SPFA, 벨만-포드, 최단 경로 문제, 라우팅

* 전남대학교 전자통신공학과(chenhaock@hotmail.com) ** 전남대학교 전자통신공학과(hjsuh@jnu.ac.kr)

접수일자 : 2012. 06. 21 심사(수정)일자 : 2012. 07. 26 게재확정일자 : 2012. 08. 09

Ⅰ. Introduction

The shortest path search in a graph is studying

for long time to minimize the sum of the weights

of its constituent edges, and has been very

important in computer, communication and trans-

portation network. etc, as the shortest path routing.

In a packet switching network, the primary function

한국전자통신학회논문지 제7권 제4호

722

is to accept packets from a source station and

deliver them to a destination station through the

path. Routing consists of two basic tasks. The first

task is to collect the state information and keep it

up-to-date. The second task is to find a

satisfactory path for a new connection based on the

collected information[1]. Most least cost routing

algorithms used in the networks and Internet are

variation of one of two algorithms, known as

Dijkstra's algorithm and Bellman-Ford algorithm[2].

The Bellman-Ford algorithm solves the shortest

path problem, together with the Dijkstra's algo-

rithm. This algorithm is less restrictive condition on

the graph, compared to Dijkstra's algorithm. And,

the time complexity of the Bellman-Ford is  ,

and the time complexity of Dijkstra's algorithm is

 , where  and  are the number of vertices

and edges respectively[3]. To improve solving this

problem, the SPFA (shortest path faster algorithm)

had been proposed, but it was an improved

Bellman-Ford algorithm[4]. Its time complexity is

 , where  is a constant. In sparse graph, the

time complexity of SPFA algorithm is far less

 . But this algorithm requires more time in

order to move the new nodes.

In this paper, a relaxation method is used for the

new node, and the implementation of algorithm has

been continuously iterated. And an optimized SPFA

algorithm is proposed. The result of the experiment

shows that the proposed algorithm has better

performance, than SPFA algorithm and Dijkstra's

algorithm.

In Chapter Ⅱ, SPFA algorithm is explained. In

Chapter Ⅲ there is an optimized SPFA algorithm

by improving the search method. In Chapter Ⅳ,

there are the comparisons of the proposed algorithm

with SPFA and Dijkstra's algorithm by expe-

riments. Chapter Ⅴ provides conclusions. Next is

references.

Ⅱ. Related Algorithm

In a digraph   , a set  is used to

denote the adjacency list of the. The weight of

each edge  is used to establish the adjacency

list  .

An array set  store the current value of the

shortest path from the source node to the remaining

nodes. Each element of the array  is initialized to

maximum value. After running SPFA algorithm, the

set  output the shortest path value of each node.

The graph for SPFA algorithm is expressed as

an adjacency list, and to search the shortest path a

dynamic optimal approach is applied. A FIFO queue

is used to store the vertex to be optimized. When

optimization, a node  is removed from the queue,

and a current path   with the node  is used

to optimize the value of path   with another

node . If adjusted, the value of the   will be

getting smaller, the node  will be added to the

queue to be further optimized. Repeatedly the nodes

from the queue is removed to optimize the current

shortest path. Until the queue is empty,

re-optimization will be done though searching a

unnecessary shortest path. At that time, array 

has stored the value of the shortest path from the

source node to the other nodes.

SPFA algorithm:

for each  in  do

 begin

 for each ∈   do read  ;
Read the weight of each edge to the adjacency

list.

  ;

Initialize each vertex whether the flag array into

the queue.

  ;

Initialize the shortest path array to the maximum

SPFA를 기반으로 개선된 벨만-포드 알고리듬

 723

value.

 end;

←;

  ;

The source node  into the queue.

   ;

From the source node to itself, the value is zero.

 while Queue not empty do

 begin

← ;

Removed a node  from the queue.

  ;

After a node  is removed, its flag array

instead of zero. It means the node  is not in the

queue.

 for each ∈   do
 if    then

 begin

 

Judge the path from the node w to the node j is

shorter than the original path, optimize the path

with node j.

 if    then

 begin

← ;

  ;

When the node  is node in the queue, the flag

of  instead of one. It means is the node  is

in the queue.

 end

 end

 end;

for each  in  do

 begin

 write ;

 end;

Optimization is complete, the array D is stored

the shortest path that from the source node to each

node. The result will be output.

 end.

 End of the algorithm.

The time complexity of SPFA algorithm is

 , where  is a constant. First in initialization

of SPFA algorithm the weight of each edge is read.

In this case there will be a time complexity is

 . The sum of out-degree of the vertexes  is

the edges . For one node, the average out-degree

is 


. Execution time is 
  . Set the number of

vertices that is added the queue  , the average of

each node is added the queue once,  ; the

average of each node is added to the queue twice,

 .  is a constant, it has noting to do with

 and . So the time complexity of SPFA

algorithm is   .

Fig. 1 Search method of SPFA algorithm

SPFA algorithm uses a FIFO queue to store the

nodes. A node is removed from the first of the

queue. The node is relaxed successfully, a new

node will be added at the end of the queue to be

further optimized. Repeatedly the node is removed

to optimize the current shortest path, until the

queue is empty. Fig.1 shows search method of

SPFA algorithm.

Ⅲ. Improving the Search Method

한국전자통신학회논문지 제7권 제4호

724

The data structure of the proposed algorithm also

uses adjacency list as SPFA algorithm. In our

algorithm, an adjacency list structure is used

significantly to save memory space and reduce sea-

rching time[5].

An important property is the triangle inequality.

Set   is a digraph with weights. a node 

is the source node, and for any node ,  is

the shortest path that from  to . For all edges

∈, ≤  is a sufficient

and necessary condition for  for the shortest

path from  to  .

The proposed algorithm uses relaxation operation.

First set  is the shortest path of node  .

Assignment  , ∞≠ . Then,

For ∈, Relax 
If   ,  

It means that if each edge do not satisfies the

triangle inequality, the destination node will be

re-assigned.

The essential of relaxation operation is an search

constantly looking for conflicting between current

state and target state. Adjustment of status is done

until no conflicting. After that time, the optimal

state is reached.

If the Bellman-Ford algorithm is used, actually

only one node is updated with each iteration, and

other loops are invalid. The Bellman-Ford algorithm

is inefficiency, because there are a lot of

unnecessary operations. It is only when the node is

updated in the last iteration that will be useful for

current iteration. The proposed algorithm takes

advantage of storage, using the queue optimization.

Its key is to store useful state only.

When the queue extent a new node, it is added

at the end of the queue. The iteration is continued.

This process required more time in order to move

the new nodes. In order to relax the new node, an

implementation of the algorithm can have an

iterated.

Fig. 2 Improving the search method of SPFA
algorithm.

Fig. 2. shows improving the search method of

SPFA algorithm. The method that begin at the first

node. By the improved algorithm, the node 1 is first

removed from the queue. After the node is relaxed

successfully, and a new node will be searched

directly. All nodes are relaxed, until the queue is

empty.

Ⅳ. Results of Experiment

To verify our idea, experiments were taken on

large amounts of data. First, the experiment of

random maps. Dijkstra's algorithm solves the

graphs with only non-negative edge weights. So in

the case of negative edge weights, there is a

comparison of the proposed algorithm with SPFA.

In the case of non-negative edge weights, there is

a comparison of the proposed algorithm with SPFA

and Dijkstra's algorithms.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Edges

Ti
m

es
(m

s)

SPFA
Proposed algorithm
Dijkstra몊

Fig. 3 Comparison of three algorithms (SPFA
algorithm, the proposed algorithm and Dijkstra's

algorithm) on random data.

SPFA를 기반으로 개선된 벨만-포드 알고리듬

 725

As shown in Fig. 3, when the size of the graphs

module is randomly generated, the proposed alg-

orithm is not desirable, because it will keep iterated

if a graph is great depth. It does too many times

to iterate. SPFA and Dijkstra's algorithms have

almost same efficiency.

Grid map is widely used because it is easy to

build and maintain without definite geometric

parameters.[6] Keeping iterated is characteristic of

the proposed algorithm. Consequently, it is used on

grid maps.

0 1 2 3 4 5 6 7 8 9 10

x 105

0

0.5

1

1.5

2

2.5
x 104

Edges

Ti
m

es
(m

s)

SPFA
Proposed algorithm

Fig. 4 Comparison of two algorithms (SPFA algorithm,
the proposed algorithm) on grid maps.

In Fig. 4, we can see clearly the relationship

between the proposed and SPFA algorithms. In

both case, SPFA algorithm takes 31048 milliseconds,

the proposed algorithm only takes 8898 milliseconds

that reduced two-third in time consumption. We

used Intel P7350 2.00 GHz, window 7(32 bits).

Ⅴ. Conclusions

The experimental results show that SPFA

algorithm and Dijkstra' algorithm have almost same

efficiency on the random graphs(Fig. 3). But on

grid maps the proposed algorithm is very efficient.

As shown in Fig. 4, SPFA algorithm takes 31048

milliseconds, the proposed algorithm only takes 8898

milliseconds that reduced two-third in time

consumption. So the proposed algorithm is more

effective on grid maps.

We could see that on grid maps the proposed

algorithm is very efficient, and the proposed algo-

rithm than SPFA algorithm reduced two-third in

time consumption by Matlab. This may broaden the

development space for the proposed algorithm in the

future.

References

 [1] 서희종, "실시간 네트워크에서 개선된 분산 QoS

알고리듬, "한국전자통신학회논문지," 7권, 1호,

pp. 53-60, 2012.

 [2] William. Stallings, "Data and Computer Com-

munications Eighth edition," Pearson Edu-

cation International, pp. 332-347, 2007.

 [3] George T. Heineman, "Algorithm in a

Nutshell," O'Reilly Media, pp. 322, Oct. 2008.

 [4] Duan. Fangding, "A Faster Algorithm for

Shortest Path-SPFA," Journal of Southwest

JIAOTONG University, Vol. 29, No. 6, pp.

207-212, Apr. 1994.

 [5] Gao. Yang, "An Improved Shortest Route Alg-

orithm in Vehicle Navigation System," Inte-

rnational Conference on Advanced Computer

Theory and Engineering (ICACTE), Vol. 2, pp.

363-366, Aug. 1996.

 [6] Wang. Kun, "Simultaneous Localization and

Map Building Based on Improved Particle

Filter in Grid Map," International Conference

on Electronic and Mechanical Engineering and

Information Technology, Vol. 2, pp. 963-966,

Aug. 2011.

저자 소개

진호(Hao Chen)

2010년 복경 석유화공학원 통신

공학과 졸업(공학사)

현재 전남대학교 대학원 전자통신

공학과 (석사과정)

※ 관심분야 : 라우팅, 코딩

한국전자통신학회논문지 제7권 제4호

726

서희종(Hee-Jong Suh)

1975년 한국항공대학교 항공통신

공학과 졸업(공학사)

1996년 중앙대학교 대학원 전자공

학과 졸업(공학박사)

1980년∼2006년 여수대학교 전자통신공학과 교수

2006년∼현재 전남대학교 전자통신공학과 교수

※ 관심분야 : 컴퓨터 네트위크, 인터넷통신, 위성

통신

