• Title/Summary/Keyword: Adhesion process

Search Result 944, Processing Time 0.028 seconds

A Study on Adhesion of Mechanical Properties of Rubber by MgCl2 (MgCl2에 의한 고무의 접착특성 및 기계적 강도 변화)

  • Kim, Seong-Hye;Jeon, Jun-Ha;Um, Gi-Yong
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • In this study, to overcome a complicated shoe adhesion process such as buffing, pre-treatment by primer in the rubber component of the shoe, we studied adhesion and mechanical properties with rubber compound added $MgCl_2$. We determined adhesion properties of $MgCl_2$ content. Especially, the rubber containing $MgCl_2$ exhibited good adhesion properties to water-based adhesion. Since $MgCl_2$ is a water-soluble salt, it was judged that this phenomenon occurred. The results are confirmed by contact angle and surface morphology measurement. In addition, in the case of rubber compound added $MgCl_2$, the crosslinking efficiency was increased and the NBS resistance was increased.

A Study on Adhesion of Mechanical Properties of Rubber by Water-soluble salt (수용성염에 의한 고무의 접착특성 및 기계적 강도)

  • Kim, Seong-hye;Jeon, Jun-Ha;Um, Gi-Yong
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2018
  • In this study, to overcome a complicated shoe adhesion process such as buffing, pre-treatment by primer in the rubber component of the shoe, we studied adhesion mechanical properties with rubber compound added water-soluble salt for the purpose of improving the adhesion between midsole and outsole. Acid salts, basic salt and neutral salts were evaluated, rubber containing basic salts showed excellent adhesion to water-based adhesion. Since the basic salt is present as the hydroxy salt, the surface of rubber is hydrophilized. The results are confirmed by contact angle and IR spectroscopy measurement. In addition, in the case of rubber compound added basic salts, NBS abrasion resistance and hardness were increased by increasing crosslink density, but crosslink time was delayed.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

The Effect of Process Condition in Nano-molding on the Property of SAM (self-assembled monolayer) (나노성형 공정 조건이 자기조립 단분자막의 이형 특성에 미치는 영향)

  • Lee, Nam-Seok;Han, Jeong-Won;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • In this study, SAM (self-assembled monolayer) was applied as an anti-adhesion layer in the nano molding process, to reduce the surface energy between the nano-stamper and the moldeded polymeric nano patterns. Before depositing SAM on the stamper, the nickel stamper was pretreated to remove oxide on the nickel stamper surface. Then, using the solution deposition method, alkanethiol SAM as an anti-adhesion layer was deposited on nickel surface. To examine the effectiveness of the SAM deposition on the metallic nano stamper, the contact angle and the lateral friction force were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. The surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the high hydrophobic quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

A study on the adhesion of Ag film deposited on Alloy42 substrate (Alloy42 기판 위에 증착된 Ag막의 밀착력에 관한 연구)

  • 이철룡;천희곤;조동율;이건환;권식철
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.496-502
    • /
    • 1999
  • Electroplating of Ag and Au on the functional area of lead frames are required for good bonding ability in IC packaging. As the patterns of the lead frame become finer, development of new deposition technology has been required for solving problems associated with process control for uniform thickness on selected area. Sputtering was employed to investigate the adhesion between substrate Alloy42 and Ag film as a new candidate process alternative to conventional electroplating. Coating thickness of Ag film was controlled to 3.5$\mu\textrm{m}$ at room temperature as a reference. The deposition of film was optimized to ensure the adhesion by process parameters of substrate heating temperature at $100~300^{\circ}C$, sputter etching time at -300V for 10~30min, bias voltage of -100~-500V, and existence of Cr interlayer film of $500\AA$. The critical $load L_{c}$ /, defined as the minimum load at which initial damage occurs, was the highest up to 29N at bias voltage of -500V by scratch test. AFM surface image and AES depth profile were investigated to analyze the interface. The effect of bias voltage in sputtering was to improve the surface roughness and remove the oxide on Alloy42.

  • PDF

Joint Characteristics of Lubricant-Impregnated Nylon and Metals (윤활제 함침 나일론과 금속의 접합특성)

  • Chang, Yoon-Sang;Kang, Suk-Choon;Ho, Kwang-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.84-89
    • /
    • 2003
  • The joint method and characteristics of lubricant Impregnated MC nylon and metal are analyzed. Considering the productivity and economics, two materials are Joined with the process of turning, knurling, and induction heating. The Joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The parameters affecting induction heating process are analyzed. The adhesion strength of the melted nylon is measured. Finally the joint strength is analyzed in the environments of low, room, and high temperature. The nylon/metal Joined material is expected to be widely used as the sliding machine elements with good friction and shear strength.

  • PDF

Study on Corrosion Resistance Performance of Zn Coating Applied by Arc Thermal and Plasma Arc Spray Process in Artificial Ocean Water (인공해양환경에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Zn 코팅 강재의 내식성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.83-84
    • /
    • 2020
  • In present study, we have deposited the Zinc coating using arc thermal spray and plasma arc spray processes onto the steel substrate and durability of the deposited coating was evaluated. The bond adhesion result shows that plasma arc sprayed Zn coating exhibited higher in its value compared to arc thermal spray. SEM shows that Zn coating deposited by plasma arc process is more compact, less porous and adherent compare to arc spray process. The corrosion resistance properties are evaluated in artificial ocean water solution with exposure periods. EIS results show that total impedance at 0.01 Hz of plasma arc sprayed coating is higher than arc thermal spray owing to the compact and less porous morphology. It is concluded that plasma arc sprayed Zn coating is better than arc thermal spray process.

  • PDF

Enhancement of Transmittance and Adhesion of Flexible Display Adhesion Surface by Bubble Removing Process (기포 제거 공정을 통한 유연한 디스플레이 합착 면의 투과율 및 접착력 향상)

  • Kim, Jungsoo;Jang, Kyungsoo;Phu, Cam;Park, Heejun;Shin, Donggi;Lee, Younjung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.330-334
    • /
    • 2018
  • With the development of the Internet of Things, the use of flexible displays has become widespread. In particular, the use of curved, bendable, and rollable displays is increasing. Flexible display production processes include various important components such as lamination material, flexible substrates, and adhesives. Among them, improvement of the lamination process comprises a large proportion of efforts for further development. In this paper, we attempt to improve the transmittance of the display substrate by performing a bubble removal process after adhesion. The transmittance of the glass substrate with the bubble removal process was 5~12% higher than that of the substrate without the bubble removal process. The fill-strength after the bubble removal process was improved by 21.4%, and the shear-strength was improved by 43.9%.

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.