• Title/Summary/Keyword: Additive white Gaussian noise

Search Result 347, Processing Time 0.024 seconds

Sliding Multiple Symbol Differential Detection of Trellis-coded MDPSK (트랠리스 부호화된 MDPSK의 흐름 다중심볼 차동검파)

  • 김한종;강창언
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.39-46
    • /
    • 1994
  • In this paper, the idea of using a multiple symbol obervation interval to improve error probability performance is applied to differential detection of MTCM(multiple trellis code modulation) with ${\Pi}$/4 shift QPSK, 8DPSK and 16DPSK. We propose two types of sliding multiple symbol differential detection algorithm, type 1 and type 2. The two types of sliding detection scheme are examined and compared with conventional(symbol-by-symbol) detection and bolck detection with these modulation formats in an additive white Gaussian noise(AWGN) using the Monte Carlo simulation. We show that the amount of improvement over conventional and block detection depends on the number of phases and the number of additional symbol intervals added to the observation. Computer simulagtion results are presented for 2,4,8 states in AWGN channel.

  • PDF

Error Performance of BPSK and QPSK Signals with Diversity Reception in Mobile-Satellite Communication Channel (이동 위성 통신 채널에서 다이버시티 수신기법을 적용한 BPSK 및 QPSK 신호의 오율 특성)

  • 박해천;강영흥;황인관;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.36-47
    • /
    • 1994
  • The error performance of BPSK and QPSK signals with diversity reception in mobile-satellite channel is investigated considering nonlinearity of TWT (Traveling Wave Tube) amplifier in the presence of AWGN(Additive White Gaussian Noise) on the uplink and downlink paths. It is assumed that the fading on the dounlink path forms a Rician distribution. The Rician distribution is approximated by discrete probability values. The values are firstly found by Classical Moment Technique.

  • PDF

New Evaluation on the Selective Diversity Systems for the Detection of M-ary PSK & DPSK Signals over Rayleigh Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.183-189
    • /
    • 2007
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effect of fading since the probability that all the signals components will fade simultaneously is reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK(M-ary DPSK) and MPSK(M-ary PSK), are mathematically derived for the Selection Combining 2(SC-2) and Selection Combining 3(SC-3) demodulation system which requires a less complex receiver than maximum ratio combining(MRC). The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the additive white gaussian noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

Analysis on SC-2 Diversity Systems for the Reception of M-ary Signals over Rayleigh Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.201-206
    • /
    • 2007
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effects of fading since the probability that all the signals components will fade simultaneously are reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK, MPSK and MQAM, are mathematically derived for the SC-2(Selection Combining 2) demodulation system, whereby the two signals with the two largest amplitudes are coherently combined among the L branches. On the other hand, maximum ratio combining(MRC) requires the individual signals from each path to be time-aligned, cophased, optimally weighted by their own fading amplitude, and then summed. The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the Additive White Gaussian Noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

BER Performance of A Communication System Using BPSK Signaling Scheme with Smart Antenna at Base Station

  • Le, Minh-Tuan;Pham, Van-Su;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.287-291
    • /
    • 2003
  • This paper analyzes Bit Error Rate (BER) performance of a wireless communication system using BPSK modulation technique with a smart antenna at base station. The channels under consideration are Additive White Gaussian Noise (AWGN) channel or a slow, flat Rayleigh lading channel with AWGN. Under the assumptions that the MMSE beamformer is used and the time delays of all users are approximately equal, we first analytically derive closed-form expressions for the BER of the desired user. Then, computer simulation is carried out to verify the theoretical results.

  • PDF

Performance Analysis of 32-QAPM System with MRC Diversity in Rician Fading Channel

  • Chun, Jae Young;Kim, Eon Gon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.227-232
    • /
    • 2016
  • In this study, the performance of a 32-quadrature amplitude position modulation (QAPM) system is analyzed under a Rician fading channel condition when the maximal ratio combining (MRC) diversity technique is used in the receiver. The fading channel is modeled as a frequency non-selective slow Rician fading channel corrupted by additive white Gaussian noise (AWGN). QAPM is available to improve BER performance without amplifying transmit power, and MRC diversity makes the performance improvement of QAPM system even bigger by intentionally maximizing SNR. Error performances are shown for the 32-QAPM system and a 32-phase silence shift keying (PSSK) system in order to examine the effects of fading severity, for various values of the Rician parameter, K. The dependence of error rates on MRC diversity is also analyzed. The simulation results show that the BER performance of the 32-QAPM system is better than that of the 32-PSSK system under the above mentioned conditions.

${\frac{\pi}{4}}$-DQPSK with Nonredundant error correction in Nakagami fading channel (나카가미 페이딩채널에서 비용장 오류정정을 갖는 ${\frac{\pi}{4}}$-DQPSK의 성능분석)

  • 송석일;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1948-1959
    • /
    • 1999
  • The error rate performance of the proposed $\pi$/4-differential quadructure phase shift keying( $\pi$/4-DQPSK) with nonredundant multiple error correction is analyzed for Nakagami fading channel. The scheme for differential detection of $\pi$/4-QPSK with nonredundant multiple error correction utilizes the output that employ the received signal delayed by more than two time slots. It was observed that the performance increased as the error correction capability increased.

  • PDF

Construction of Multiple-Rate Quasi-Cyclic LDPC Codes via the Hyperplane Decomposing

  • Jiang, Xueqin;Yan, Yier;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • This paper presents an approach to the construction of multiple-rate quasi-cyclic low-density parity-check (LDPC) codes. Parity-check matrices of the proposed codes consist of $q{\times}q$ square submatrices. The block rows and block columns of the parity-check matrix correspond to the hyperplanes (${\mu}$-fiats) and points in Euclidean geometries, respectively. By decomposing the ${\mu}$-fiats, we obtain LDPC codes of different code rates and a constant code length. The code performance is investigated in term of the bit error rate and compared with those of LDPC codes given in IEEE standards. Simulation results show that our codes perform very well and have low error floors over the additive white Gaussian noise channel.

On Achievable Information Rates for Multiuser MIMO Systems with MMSE-Based Tomlinson-Harashima Precoding

  • Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.750-755
    • /
    • 2009
  • Tomlinson-Harashima precoding (THP) is considered as a prominent precoding scheme due to its capability to cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, a new lower bound on the achievable information rate by the regularized THP under additive white Gaussian noise (AWGN) channel with multiuser interference is derived. Analytical results show that the lower bound derived in this paper is tighter than the original lower bound particularly at low SNR range, while both lower bounds converge to the same lower limit as SNR$\rightarrow$$\infty$.

Comprehensive Analysis of Turbo TCM over Two Typical Channels

  • Bai, Zhiquan;Yuan, Dongfeng;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, system performance of turbo trellis coded modulation (turbo TCM) is presented and analyzed through computer simulations over two typical channels, namely additive white Gaussian noise (AWGN) and Rayleigh fading channels. We use and compare different mapping strategies based on Ungerboeck partitioning (UP), block partitioning (BP), mixed partitioning (MP), Gray partitioning (GP), and Ungerboeck-Gray partitioning (UGP) of the signal constellation of the turbo TCM system. Furthermore, taking 8PSK modulation of turbo TCM as an example, our simulation results show that turbo TCM with UP can obtain better performance than turbo TCM with BP, MP, GP, and UGP in both AWGN and Rayleigh fading channels.