• Title/Summary/Keyword: Adaptive timing synchronization

Search Result 12, Processing Time 0.023 seconds

A Timing Synchronization Performance Comparison between Adaptive Filter and Correlator (적응형 필터와 상관기의 시간 동기 획득 성능 비교)

  • Yu, Tak-Ki;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.697-708
    • /
    • 2010
  • In this paper, we compare the timing synchronization performance of the adaptive filter to that of the correlator in direct sequence spread spectrum (DS/SS) systems. The test variables used in the code synchronization are statistically analyzed for both schemes, and then the obtained results are used in calculating the detection and false alarm probabilities. Based on the derived probabilities, the synchronization performance is compared and the simulation is followed. Analysis and simulation results show that the correlator outperforms the adaptive filter under most synchronization environments.

Synchronization performance optimization using adaptive bandwidth filter and average power controller over DTV system (DTV시스템에서 평균 파워 조절기와 추정 옵셋 변화율에 따른 대역폭 조절 필터를 이용한 동기 성능 최적화)

  • Nam, Wan-Ju;Lee, Sung-Jun;Sohn, Sung-Hwan;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2007
  • To recover transmitted signal perfectly at DTV receiver, we have to acquire carrier frequency synchronization to compensate pilot signal which located in wrong position and rotated phase. Also, we need a symbol timing synchronization to compensate sampling timing error. Conventionally, to synchronize symbol timing, we use Gardner's scheme which used in multi-level signal. Gardner's scheme is well known for its sampling the timing error signal from every symbol and it makes easy to detect and keep timing sync in multi-path channel. In this paper, to discuss the problem when the received power level is out of range and we cannot get synchronization information. With this problem, we use 2 step procedures. First, we put a received signal power compensation block before Garder's timing error detector. Second, adaptive loop filter to get a fast synchronization information and averaging loop filter's output value to reduce the amount of jitter after synchronization in PLL(Phased Locked Loop) circuit which is used to get a carrier frequency synchronization and symbol timing synchronization. Using the averaging value, we can estimate offset. Based on offset changing ratio, we can adapt adaptive loop filter to carrier frequency and symbol timing synchronization circuit.

Adaptive Timing Synchronization Algorithm for WiBro Uplink (WiBro 상향링크를 위한 적응적 시간동기 추정 알고리즘)

  • Kim, Jeong-Been;Jin, Young-Hwan;Kim, Kyung-Soo;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1068-1075
    • /
    • 2006
  • An adaptive ranging technique for Orthogonal Frequency Division Multiple Access(OFDMA) uplink transmission is proposed for timing synchronization of multiple mobile stations located different distances from a base station. By combining the Timing Phase Compensated Frequency Domain Cross-correlation(TPCFDC) and Frequency Domain Differential Cross-correlation(FDDC), the proposed scheme reduces the number of correlators used in ordinary TPCFDC. Repeated initial ranging attempt with the FDDC in the proposed scheme greatly reduces the hardware implementation complexity. Simulation results for ranging success probability and average ranging attempts count show that the proposed algorithm performs similarly with the ordinary TPCFDC even with the 10 times reduced complexity.

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

LED Driver Solution for Backlighting large TFT-LCD Panels with Adaptive Power Control & Video Synchronization

  • Dhayagude, Tushar;Dilip, S;Santo, Hendrik;Vi, Kien;Chen, Sean;Kim, Min-Jong;Schindler, Matt;Ghoman, Ran
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1487-1490
    • /
    • 2008
  • mSilica developed a scalable integrated circuit solution for driving multiple arrays of LEDs to backlight TFT-LCD panels. The drivers incorporate adaptive power control of the DC-DC power supply powering the LEDs to improve the efficiency while synchronizing PWM dimming with video timing signals VSYNC and HSYNC to reduce motion blur.

  • PDF

A Symbol Timing Recovery scheme using the jitter mean of adaptive loop filter in ATSC DTV systems (적응적 루프필터의 지터 평균값을 이용한 ATSC DTV 심볼 타이밍 동기 방식)

  • Kim, Joo-Kyoung;Lee, Joo-hyoung;Song, Hyun-keun;Kim, Jae-Moung;Kim, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.10 s.340
    • /
    • pp.1-8
    • /
    • 2005
  • This Paper Proposes the algorithm for improving the Performance or symbol timing synchronization in hoc terrestrial DTV system. The Gardner algerian is used for symbol timing synchronization has good performance in multipath fading environment but degradation of performance is caused by jitter. Though the amount of jitter becomes more little as narrow bandwidth of loop Inter, convergence speed becomes slower. This paper propose the algorithm that averages out values of loop filter every certain time and gradually reduces the bandwidth of loop filter after estimating offset using this average for the high speed of convergence and reducing the met of jitter. The proposed algorithm has better performance with high speed of convergence and the amount of jitter than conventional method.

A Study on Adaptive Pilot Beacon for Hard Handoff at CDMA Communication Network (CDMA 통신망의 하드핸드오프 지원을 위한 적응형 파일럿 비콘에 관한 연구)

  • Jeong Ki Hyeok;Hong Dong Ho;Hong Wan Pyo;Ra Keuk Hwawn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.922-929
    • /
    • 2005
  • This paper proposes an adaptive pilot beacon equipment for mobile communication systems based on direct spread spectrum technology which generates the pilot channel for handoff between base stations by using the information acquired from the downstream wireless signal regarding the overhead channel information. Such an adaptive pilot beacon equipment will enable low power operation since among the wireless signals, only the pilot channel will be generated and transmitted. The pilot channel in the downstream link of the CDMA receiver is used to acquire time and frequency synchronization and this is used to calibrate the offset for the beacon, which implies that time synchronization using GPS is not required and any location where forward receive signal can be received can be used as the installation site. The downstream link pilot signal searching within the CDMA receiver is performed by FPGA and DSP. The FPGA is used to perform the initial synchronization for the pilot searcher and DSP is used to perform the offset correction between beacon clock and base station clock. The CDMA transmitter the adaptive pilot beacon equipment will use the timing offset information in the pilot channel acquired from the CDMA receiver and generate the downstream link pilot signal synchronized to the base station. The intermediate frequency signal is passed through the FIR filter and subsequently upconverted and amplified before being radiated through the antenna.

A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

  • Hong, WoonSeon;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.565-573
    • /
    • 2017
  • This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing synchronization effects for the measurement of AKNF. With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error improvement compared to the conventional gyro compass alignment.

Performance Evaluation of a Pilot Interference Cancellation Scheme in a WCDMA Wireless Repeater (WCDMA 무선 중계기에서 파일럿 간섭제거 기법의 성능평가)

  • Kim, Sun-Ho;Shim, Hee-Sung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.111-117
    • /
    • 2009
  • In the wideband code division access (WCDMA) systems, a pilot channel is used to determine WCDMA network coverage, cell identification, synchronization, timing acquisition and tracking, user-set handoff, channel estimation, and so on. A wireless repeater, which is deployed in the urban area for the WCDMA system to meet the growing demand on wireless communication services, has the possibility to receive several pilot signals from a large number of base stations, however, cannot distinguish its service base station's signal among them. This pilot interference results in frequent handoffs in the user equipment, which degrades the radio reception, transmission efficiency, quality of service, and channel capacity and increases the unwanted power consumption. In this paper, thus, we propose a pilot pollution interference cancellation scheme using one of the adaptive estimation algorithms, normalized least mean square (NLMS), which is applicable to a wireless repeater. We carried out link-level and network-level computer simulations to evaluate the performance of the proposed scheme in a wireless repeater. The simulation results verify the bit error rate (BER) improvement in the link level and the call drop probability improvement in the network level.