• Title/Summary/Keyword: Adaptive slicing

Search Result 24, Processing Time 0.027 seconds

Performance Analysis of the Optimal Turbo Coded V-BLAST technique in Adaptive Modulation System (적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법의 성능 분석)

  • Lee, Kyung-Hwan;Choi, Kwang-Wook;Ryoo, Sang-Jin;Kang, Min-Goo;Hong, Dae-Ki;You, Cheol-Woo;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.385-391
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding to use as a priori probability in two decoding procedures of V-BLAST: ordering and slicing. Also, comparing with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. As a result of simulation, in the Adaptive Modulation systems with several Turbo Coded V-BLAST techniques, the optimal Turbo Coded V-BLAST technique has higher throughput gain than the conventional Turbo Coded V-BLAST technique. Especially, the results show that the proposed scheme achieves the gain of 1.5 dB SNR compared to the conventional system at 2.5 Mbps throughput.

Improvement of the Adaptive Modulation System with Optimal Turbo Coded V-BLAST Technique using STD Scheme (선택적 전송 다이버시티 기법을 적용한 최적의 터보 부호화된 V-BLAST 적응변조 시스템의 성능 개선)

  • Ryoo, Sang-Jin;Choi, Kwang-Wook;Lee, Kyung-Hwan;You, Cheol- Woo;Hong, Dae-Ki;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.6-14
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder in decoding Algorithm of V-BLAST: ordering and slicing. The extrinsic information is used by a priori probability and the system decoding process is composed of the Main Iteration and the Sub Iteration. And comparing the proposed system with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. In addition, we observe the proposed system using STD (Selection Transmit Diversity) scheme. As a result of simulation, Comparing with the conventional Turbo Coded V-BLAST technique with the Adaptive Modulation systems, the optimal Turbo Coded V-BLAST technique with the Adaptive Modulation systems has better throughput gain that is about 350 Kbps in 11 dB SNR range. Especially, comparing with the conventional Turbo Coded V-BLAST technique using 2 transmit and 2 receive antennas, the proposed system with STD (Selection Transmit Diversity) scheme show that the improvement of maximum throughput is about 1.77 Mbps in the same SNR range.

Direct Slicing with Optimum Number of Contour Points

  • Gupta Tanay;Chandila Parveen Kumar;Tripathi Vyomkesh;Choudhury Asimava Roy
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.33-45
    • /
    • 2004
  • In this work, a rational procedure has been formulated for the selection of points approximating slice contours cut in LOM (Laminated Object manufacturing) with first order approximation. It is suggested that the number of points representing a slice contour can be 'minimised' or 'optmised' by equating the horizontal chordal deviation (HCD) to the user-defined surface form tolerance. It has been shown that such optimization leads to substantial reduction in slice height calculations and NC codes file size for cutting out the slices. Due to optimization, the number of contour points varies from layer to layer, so that points on successive layer contours have to be matched by four sided ruled surface patches and triangular patches. The technological problems associated with the cutting out of triangular patches have been addressed. A robust algorithm has been developed for the determination of slice height for optimum and arbitrary numbers of contour points with different strategies for error calculations. It has been shown that optimisation may even lead to detection and appropriate representation of elusive surface features. An index of optimisation has been defined and calculations of the same have been tabulated.

Throughput Improvement of Adaptive Modulation System with an Efficient Turbo-Coded V-BLAST Technique in each MIMO Channel

  • Ryoo, Sang-Jin;Kim, Seo-Gyun;Na, Cheol-Hun;Hong, Jin-Woo;Hwang, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.905-908
    • /
    • 2008
  • In this paper, an Adaptive Modulation (AM) system with an efficient turbo-coded Vertical-Bell-lab Layered Space-Time (V-BLAST) technique is proposed. The proposed decoding algorithm adopts iteratively the extrinsic information from a Maximum a Posteriori (MAP) decoder as a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing. In this analysis, each MIMO channel is assumed to be a part of the system of performance improvement.

  • PDF

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

RP model decomposition algorithm for making 3D layer (3D layer 생성을 위한 RP 모델 분할 알고리즘)

  • 이재호;박준영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.724-727
    • /
    • 2000
  • Rapid Prototyping(RP)이란 3차원 솔리드 모델을 단면화한 뒤 하나씩 적층하는 가공방식을 총칭한다. 이때 단면화하는 방법에 따라서 uniform, adaptive slicing으로 나뉘며, 입력 모델에 따라서 direct slicing과 STL을 이용한 방식으로 나뉜다. 적층 방법에 따라서는 연속된 2D 윤곽을 기반으로 적층하는 vertical layer 방식과 인접한 두 개의 2D 윤곽들을 연결하며 만들어진 3D layer를 기반으로 가공하는 sloping layer방식으로 나뉠 수 있다. 현재 상용 RP 시스템들에서는 거의 모든 경우 vertical layer 방식이 채택되어 사용되고 있다. RP와 절삭 공정, 예를 들면 CNC 밀링의 장점을 효율적으로 결합하기 위해서는 임의의 복잡한 형상을 갖는 솔리드 모델을 정밀도에 제한이 없이 제조할 수 있어야 한다. 그러나 절삭 공정은 특별한 전문적 지식들을 필요로 한다 또한 상용 RP에서 사용하는 순차적인 적층 작업으로는 가공할 수 없는 형상들이 많다. 대표적인 것으로 지지대를 필요로 하는 형상들이 있다. 이러한 형상들을 지원하기 위해서는 복잡한 3D 형상을 절삭 가능한 형식으로 분할하는 것과 적층 가능한 순서대로 공정 계획하는 것이 필요하게 된다. 본 연구에서는 SDM에서 제시된 3D 분할 방법이 솔리드 모델을 기반으로 전개되어 STL file과 같은 삼각다면체 형식으로 근사화된 모델에 적용하기 어렵다는데 착안하여 STL file에서 읽어들인 삼각 다면체 모델을 가공 가능한 3D 형상으로 분할하는 알고리즘을 제시하고자 한다.

  • PDF

The Combined AMC-MIMO System with Optimal Turbo Coded V-BLAST Technique to Improve Throughput and SNR (전송률 향상 및 SNR 개선을 위한 최적의 터보 부호화된 V-BLAST 기법을 적용한 AMC-MIMO 결합시스템)

  • Ryoo, Sang-Jin;Lee, Kyung-Hwan;Choi, Kwang-Wook;Lee, Keun-Hong;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.61-70
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST(Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP Decoder in decoding Algorithm of V-BLAST: ordering and slicing. And comparing the proposed system with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance and SNR has been improved. In addition, we show that the proposed system using STD(Selection Transmit Diversity) scheme results in on improved result, By using simulation and comparing to conventional Turbo Coded V-BLAST technique with the Adaptive Modulation systems, the optimal Turbo Coded V-BLAST technique with the Adaptive Modulation systems has SNR gain over all SNR range and better throughput gain that is about 350Kbps in 11dB SNR range. Also, comparing with the conventional Turbo Coded V-BLAST technique using 2 transmit and 2 receive antennas, the proposed system with STD scheme show that the improvement of maximum throughput is about 1.77Mbps in the same SNR range and the SNR gain is about 5.88dB to satisfy 4Mbps throughput performance.

  • PDF

Automatic Generation of the Input Data for Rapid Prototyping from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 쾌속조형을 위한 입력데이터의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.144-153
    • /
    • 2007
  • In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

The Implementation of Agile SFFS using 5DOF Robot

  • Kim, Seung-Woo;Jung, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.716-721
    • /
    • 2004
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of speedy prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the ${CAFL}^{VM}$(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. In this paper, we design an algorithm that the cutting path of a laser beam which is controlled with constant speed. The laser beam is tangentially controlled in order to solve the inaccuracy of a 3D model surface. The designed algorithm for constant-speed path control and tangent-cutting control is implemented and experimented in the ${CAFL}^{VM}$ system.

  • PDF