• Title/Summary/Keyword: Adaptive neuro-fuzzy inference systems

Search Result 55, Processing Time 0.03 seconds

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF

Stabilized Control of Inverted Pendulum System by ANFIS

  • Lee, Joon-Tark;Lee, Oh-Keol;Shim, Young-Zin;Chung, Hyeng-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.691-695
    • /
    • 1998
  • Most of systems has nonlinearity . And also accurate modelings of these uncertain nonlinear systems are very difficult. In this paper, a fuzzy modeling technique for the stabilization control of an IP(inverted pendulum) system with nonlinearity was proposed. The fuzzy modeling was acquired on the basis of ANFIS(Adaptive Neuro Fuzzy Infernce System) which could learn using a series of input-output data pairs. Simulation results showed its superiority to the PID controller. We believe that its applicability can be extended to the other nonlinear systems.

  • PDF

Adaptive Neuro-Fuzzy Inference Systems for Indoor Propagation Prediction

  • Phaiboon, S.;Phokharatkul, P.;Somkurnpanich, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1865-1869
    • /
    • 2004
  • A new model for the propagation prediction for mobile communication network inside building is presented in this paper. The model is based on the determination of the dominant paths between the transmitter and the receiver. The field strength is predicted with adaptive neuro - fuzzy inference systems (ANFIS), trained with measurements. The advantage of the ANFIS with hybrid least squares and gradient descent algorithms is fast convergence compared with original neural network. The K-means algorithm for selection of training patterns is also used. Comparison of our predicted results to measurements indicate that improvements in accuracy over conventional empirical model are achieved.

  • PDF

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.