• Title/Summary/Keyword: Adaptive genetic algorithm

Search Result 227, Processing Time 0.026 seconds

Adaptive control with multiple model (using genetic algorithm)

  • Kwon, Seong-Chul;Park, Juhyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.331-334
    • /
    • 1996
  • It is a well-known problem that the adaptive control has a poor transient response. In order to improve this problem, the scheme that model-reference adaptive control (MRAC) uses the genetic algorithm (GA) in the search for parameters is proposed. Use genetic algorithm (GA) in the searching for controller's parameters set and conventional gradient method for fine tuning. And show the reduction of the oscillations in transient response comparing with the conventional MRAC.

  • PDF

Development of an User Interface Design Method using Adaptive Genetic Algorithm (적응형 유전알고리즘을 이용한 사용자 인터페이스 설계 방법 개발)

  • Jung, Ki-Hyo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2012
  • The size and layout of user interface components need to be optimally designed in terms of reachability, visibility, clearance, and compatibility in order for efficient and effective use of products. The present study develops an ergonomic design method which optimizes the size and layout of user interface components using adaptive genetic algorithm. The developed design method determines a near-optimal design which maximizes the aggregated score of 4 ergonomic design criteria (reachability, visibility, clearance, and compatibility). The adaptive genetic algorithm used in the present study finds a near-optimum by automatically adjusting the key parameter (probability of mutation) of traditional genetic algorithm according to the characteristic of current solutions. Since the adaptive mechanism partially helps to overcome the local optimality problem, the probability of finding the near-optimum has been substantially improved. To evaluate the effectiveness of the developed design method, the present study applied it to the user interface design for a portable wireless communication radio.

Study on Pattern Synthesis of Conformal Array Antenna Using Enhanced Adaptive Genetic Algorithm (향상된 적응형 유전 알고리즘을 이용한 컨포멀 배열 안테나의 빔 합성 연구)

  • Seong, Cheol-Min;Lee, Jae-Duk;Han, In-Hee;Ryu, Hong-Kyun;Lee, Kyu-Song;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.592-600
    • /
    • 2014
  • This paper proposes an enhanced adaptive genetic algorithm(EAGA) dedicated to pattern synthesis of array antenna which conforms to a curved surface of rotation with quadratic function. EAGA combines adaptive genetic algorithm(AGA) with invasive weed optimization(IWO) for the faster convergence and the lower cost value of the cost function. The amplitude and phase of each excited weighting factor are optimized to meet the required goals using EAGA. The EAGA results indicate that the proposed algorithm is superior to AGA when applied to the problem of conformal array antenna pattern synthesis.

Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware (진화 시스템을 위한 유전자 알고리즘 프로세서의 구현)

  • 정석우;김현식;김동순;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.265-276
    • /
    • 2004
  • Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

An Experimental Comparison of Adaptive Genetic Algorithms (적응형 유전알고리즘의 실험적 비교)

  • Yun, Young-Su
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.1-18
    • /
    • 2007
  • In this paper, we develop an adaptive genetic algorithm (aGA). The aGA has an adaptive scheme which can automatically determine the use of local search technique and adaptively regulate the rates of crossover and mutation operations during its search process. For the adaptive scheme, the ratio of degree of dispersion resulting from the various fitness values of the populations at continuous two generations is considered. For the local search technique, an improved iterative hill climbing method is used and incorporated into genetic algorithm (GA) loop. In order to demonstrate the efficiency of the aGA, i) a canonical GA without any adaptive scheme and ii) several conventional aGAs with various adaptive schemes are also presented. These algorithms, including the aGA, are tested and analyzed each other using various test problems. Numerical results by various measures of performance show that the proposed aGA outperforms the conventional algorithms.

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

VLSI Implementation of Adaptive mutation rate Genetic Algorithm Processor (자가적응 유전자 알고리즘 프로세서의 VLSI 구현)

  • 허인수;이주환;조민석;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper has been studied a Adaptive Mutation rate Genetic Algorithm Processor. Genetic Algorithm(GA) has some control parameters such as the probability of bit mutation or the probability of crossover. These value give a priori by the designer There exists a wide variety of values for for control parameters and it is difficult to find the best choice of these values in order to optimize the behavior of a particular GA. We proposed a Adaptive mutation rate GA within a steady-state genetic algorithm in order to provide a self-adapting mutation mechanism. In this paper, the proposed a adaptive mutation rate GAP is implemented on the FPGA board with a APEX EP20K600EBC652-3 devices. The proposed a adaptive mutation rate GAP increased the speed of finding optimal solution by about 10%, and increased probability of finding the optimal solution more than the conventional GAP

  • PDF

Comparison of Adaptive Operators in Genetic Algorithms (유전알고리즘에서 적응적 연산자들의 비교연구)

  • Yun, Young-Su;Seo, Seoun-Lock
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.189-203
    • /
    • 2002
  • In this paper we compare the performances of adaptive operators in genetic algorithm. For the adaptive operators, the crossover and mutation operators of genetic algorithm are considered. One fuzzy logic controller is developed in this paper and two heuristics is presented from conventional works for constructing the operators. The fuzzy logic controller and two conventional heuristics adaptively regulate the rates of the operators during genetic search process. All the algorithms are tested and analyzed in numerical examples. Finally, the best algorithm is recommended.

  • PDF

A Hybridization of Adaptive Genetic Algorithm and Particle Swarm Optimization for Numerical Optimization Functions

  • Yun, Young-Su;Gen, Mitsuo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.463-467
    • /
    • 2008
  • Heuristic optimization using hybrid algorithms have provided a robust and efficient approach for solving many optimization problems. In this paper, a new hybrid algorithm using adaptive genetic algorithm (aGA) and particle swarm optimization (PSO) is proposed. The proposed hybrid algorithm is applied to solve numerical optimization functions. The results are compared with those of GA and other conventional PSOs. Finally, the proposed hybrid algorithm outperforms others.

  • PDF