• 제목/요약/키워드: Adaptive fuzzy interacting multiple model algorithm

검색결과 13건 처리시간 0.025초

Design of Adaptive Fuzzy IMM Algorithm for Tracking the Maneuvering Target with Time-varying Measurement Noise

  • Kim, Hyun-Sik;Kim, In-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.307-316
    • /
    • 2007
  • In real system application, the interacting multiple model (IMM) based algorithm operates with the following problems: it requires less computing resources as well as a good performance with respect to the various target maneuvering, it requires a robust performance with respect to the time-varying measurement noise, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as the inputs of the fuzzy decision maker whose widths are adjusted, is proposed. To verify the performance of the proposed algorithm, a radar target tracking is performed. Simulation results show that the proposed AFIMM algorithm solves all problems in the real system application of the IMM based algorithm.

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법 (IMM Method Using Kalman Filter with Fuzzy Gain)

  • 노선영;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain

  • 노선영;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법 (IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

기동 표적 추적을 위한 GA 기반 IMM 방법 (GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

An Intelligent Tracking Method for a Maneuvering Target

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.93-100
    • /
    • 2003
  • Accuracy in maneuvering target tracking using multiple models relies upon the suit-ability of each target motion model to be used. To construct multiple models, the interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require predefined sub-models and predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers. To solve these problems, this paper proposes the GA-based IMM method as an intelligent tracking method for a maneuvering target. In the proposed method, the acceleration input is regarded as an additive process noise, a sub-model is represented as a fuzzy system to compute the time-varying variance of the overall process noise, and, to optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. The simulation results show that the proposed method has a better tracking performance than the AIMM algorithm.

기동표적의 위치추적을 위한 적응 퍼지 IMM 알고리즘 (Adaptive Fuzzy IMM Algorithm for Position Tracking of Maneuvering Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.855-861
    • /
    • 2007
  • 실제 시스템 적용에 있어서, IMM에 기초한 위치 추적 알고리즘은 불확실한 표적 기동에 대해서 강인한 성능, 적은 연산량, 간편한 설계 절차를 필요로 한다. 이 문제들을 해결하기 위해서 잘 정의된 기저 부모델 및 잘 조정된 모델 천이 확률에 기초한 적응 퍼지 IMM 알고리즘을 제안하였다. 시뮬레이션 결과는 제안된 알고리즘이 IMM에 기초한 알고리즘의 실제 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법 (GA-Based IMM Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법 (A GA-Based IMM Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.