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Design of Adaptive Fuzzy IMM Algorithm for Tracking the
Maneuvering Target with Time-varying Measurement Noise

Hyun-Sik Kim and In-Ho Kim

Abstract: In real system application, the interacting multiple model (IMM) based algorithm
operates with the following problems: it requires less computing resources as well as a good
performance with respect to the various target maneuvering, it requires a robust performance
with respect to the time-varying measurement noise, and further, it requires an easy design
procedure in terms of its structures and parameters. To solve these problems, an adaptive fuzzy
interacting multiple model (AFIMM) algorithm, which is based on the basis sub-models defined
by considering the maneuvering property and the time-varying mode transition probabilities
designed by using the mode probabilities as the inputs of the fuzzy decision maker whose widths
are adjusted, is proposed. To verify the performance of the proposed algorithm, a radar target
tracking is performed. Simulation results show that the proposed AFIMM algorithm solves all
problems in the real system application of the IMM based algorithm.
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target tracking, time-varying mode transition probabilities.

1. INTRODUCTION

The Kalman filter, which is well known as a
recursive estimator based on optimal filter theory, has
been widely used in target tracking. However, in the
case that a single filter is used in the maneuvering
target tracking, its performance worsens. For this
reason, many kinds of tracking algorithms using the
Kalman filter have been studied in order to solve this
problem. Among them, the interacting multiple mode!
(IMM) algorithm is well known to have a good
performance even though it is a sub-optimal filter [1-
4]. In the IMM based algorithm, if the target
maneuvering is similar to the output of a sub-model,
the tracking error is small; otherwise, the error is big.
For this reason, it requires many sub-models in order
to have a good performance with respect to the
various target maneuvering. Nevertheless, it 1is
unreasonable to use the algorithm that has more
computing resources in the real system application.
Also, the performance of the IMM based algorithm
depends on the mode transition probabilities as well
as the sub-models, i.e., if the mode transition
probabilities are adjusted, the performance of the
IMM based algorithm is better than that of the
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conventional IMM based algorithm. Moreover, the
performance of the IMM based algorithm depends on
the measurement noise, i.e., if the measurement noise
is increased in the case that a sub-model matches with
the target maneuvering, its performance worsens
because the values of the mode probabilities which
generate the combined state become similar.

To solve these problems, various IMM based
algorithms have been suggested. Lee [S] proposed the
algorithm that has three optimal sub-models whose
parameters are adjusted by the genetic algorithm (GA).
Although it has a small number of sub-models as well
as a good performance, it still has a computational
burden in optimizing sub-models by the GA. Campo
[6] proposed the algorithm that adjusts the mode
transition probabilities by the sojourn time dependent
Markov model switching. Although it has better
performance, it has difficulty in determining the
design parameters. Kim [7] proposed the fuzzy
interacting multiple model (FIMM) algorithm that
utilizes the basis sub-models defined by considering
the maneuvering property and adjusts the mode
transition probabilities designed by using the mode
probabilities as the inputs of a fuzzy decision maker.
Although it has an easy design procedure as well as
less computing resources and a good performance, it
still depends on the measurement noise.

To resolve these problems, an adaptive fuzzy
interacting multiple model (AFIMM) algorithm,
which is based on the basis sub-models defined by
considering the maneuvering property and the time-
varying mode transition probabilities designed by
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using the mode probabilities as the inputs of the fuzzy
decision maker whose widths are adjusted, is
proposed.

The design procedure of the AFIMM algorithm
encompasses the following contents: the practical
definition method of the basis sub-models defined by
considering the maneuvering property; and the easy
design method of the time-varying mode transition
probabilities designed by using the mode probabilities
as the inputs of the fuzzy decision maker whose
widths are adjusted.

The proposed algorithm has four major advantages:
1) it has less computing resources because the number
of basis sub-models is small 2) it has more robust
performance with respect to the various target
maneuvering and the time-varying measurement noise
because the mode transition probabilities are adjusted
by the fuzzy decision maker whose widths are
adjusted 3) it has an easy fuzzy partition and an easy
fuzzy rule because the mode probabilities are
normalized values and the sum of them is 1.0, and 4)
it easily extends the simplified fuzzy reasoning
method [8,9] because the mode transition probabilities
have the form of a matrix.

The IMM algorithm is introduced in Section 2. The
design of the proposed AFIMM algorithm is described
in Section 3, and the simulation results of the
proposed AFIMM algorithm with respect to the
various target maneuvering are presented in Section 4.
Finally, the conclusions are summarized in Section 5.

2. IMM ALGORITHM

In this section, the main elements of the IMM
algorithm, which is based on the Kalman filter, are
introduced.

The IMM algorithm is well known to have good
performance with respect to the various target
maneuvering although it is a sub-optimal filter based
on the Markov chain whose transition depends on the
latest state. The detail contents are well explained in
[3], and the main elements of the IMM algorithm are
as follows:

The mode transition probabilities, which are related
to Markov chain, are defined as

Py = P{M; (k)| M; (k- 1)}

bu P o Py
b P o P2y (1)
ban P2 v Py
where i, j=12,...,r and » is the number of
sub-models.

And the mixing probability is defined as

1
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where ¢; is the normalization constant of j-th sub-
model, and g;(k—1) denotes i-th mode probability

at the scan k-1.
r
c; = Zpij/ui (k—1). 3
i=1

And then, the mixed state and the state covariance
are defined as
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where &' (k - llk —1) is the state vector.
Also, the mode probability is defined as
1
luj(k):_c_Aj(k)cj’ (6)
where ¢ is a normalization constant.
s
c=> Ak, (7)

J=1
and A ;(k)is alikelihood function defined as

Ak = __I__exp(-%vjf *)S; (k)],
S, (k)|

(27)"

(8)
and v;(k)=z(k)—2;(k~1Jk), S;(k) is the innova-

tion covariance that includes the measurement
covariance, and 7. is the dimension of measurement
vector z(k).

Finally, the combined state and the state covariance
are defined as

(k|k) =2 % (k[ (k), ©)
j=l

P(klky=3" u; (k){Pf (k{k) + [,ef (k|k) - x(k]k)]
j=l
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[;cf (k|k) — fc(klk)J } (10)
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From the above mentioned (1)-(10), we note that
the performance of the IMM algorithm depends on the
mode transition probabilities as well as the sub-
models, i.e., if the target maneuvering is similar to the
output of a sub-model, the tracking error is small;
otherwise, the error is relatively big; and if the values
of a column in (1) are increased, the corresponding
sub-model is strongly reflected in generating the
combined state in (9); if the values of all columns are
equally assigned, all sub-models are equally reflected.

3. DESIGN OF AFIMM ALGORITHM

In this section, an AFIMM algorithm, which is
based on the basis sub-models defined by considering
the maneuvering property and the time-varying mode
transition probabilities designed by using the mode
probabilities as the inputs of the fuzzy decision maker
whose widths are adjusted, is designed.

The one cycle AFIMM algorithm that has the fuzzy
decision maker, which includes a width decisioner, a
normalizer, a dominant signal generator, and an arc
signal generator, is shown in Fig. 1.

The detail design procedure of the AFIMM
algorithm is divided into the following two phases:

In the first phase of the design procedure, the
practical definition method of the basis sub-models,
which is defined by considering the maneuvering
property, is described as follows:

Generally, the maneuvering property can be
expressed by

Maneuvering Property = f(v, a, », T, ,,), (11)

where v is target speed, a is target acceleration,
wis target angular velocity, T is sampling period,
and o,, isthe standard deviation of the measurement

noise.

The kinematic models can be divided into four
types: a constant velocity (CV) model, a Singer (SG)
model [4], a constant acceleration (CA) model, and a
coordinated turn (CT) model.

However, if the maneuvering property and the
kinematic models are considered in the definition of
sub-models by the designer, the definition is executed
by the method that is shown in Fig. 2.

This method explains that the maneuvering
property is closely related to the elements such as
target speed, target acceleration, target angular
velocity, sampling period, and the standard deviation
of the measurement noise, i.e., if the sampling period
is small or the standard deviation of the measurement
noise is large, the number of sub-models can be
reduced because unnecessary sub-models can exist.

According to the analysis of the above mentioned
definition method, the kinematic models can be
interpreted as the acceleration models that have
different acceleration rates and axis-coupling rates as
follows:

CV <SG <CA<<CT, (12)

This relation implies that SG and CA models can be
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1 L
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Fig. 1. AFIMM algorithm (one cycle).
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Fig. 2. Sub-model definition method.

unnecessary sub-models because they can be made by
the weighted sum of the CV and CT models that can
be candidates for basis sub-models. And the @ of
the CT model can be determined because the
maximum turning rate of the desired target is
generally known although its turning direction is
unknown.

Therefore, in the horizontal plane, two basis sub-
models composed of CV model and CA model can be
sufficient for general tracking of the vertical
maneuvering target and three basis sub-models
composed of one CV model and two CT models can
be sufficient for general tracking of the horizontal
maneuvering target.

Consequently, the number of basis sub-models is
small. Note that it solves the problem of less
computing resources in the real system application of
the IMM based algorithm.

In the second phase of the design procedure, the
easy design method of the time-varying mode
transition probabilities, which is designed by using the
mode probability as the inputs of the fuzzy decision
maker whose widths are adjusted, is described as
follows:

To adjust the mode transition probabilities in (1),
the performance index is needed for evaluating each
sub-model. Incidentally, the mode probability in (6)
plays a role in evaluating each sub-model because the
mode probability is the function of the likelihood

function that includes the innovation covariance in (8).

Therefore, the mode probabilities are used as the
fuzzy inputs.

The fuzzy partition for the fuzzy decision maker
employs five bell-shaped membership functions that
are shown in Fig. 3.

This partition has the membership function that is
defined as

2
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Fig. 3. Fuzzy partition for AFIMM.

where n=0,1,2,...,r is fuzzy rule number, 4 is

linguistic term, ¢;' and o, are respectively the
center and the width of # -th fuzzy rule.

And it is based on the facts that the mode
probabilities in (6) are normalized values and the sum
of them is 1.0. This is directly related to use the mode
probabilities as fuzzy inputs. From these facts, the
centers of DB and RB membership functions are
respectively set to 1.0 and 0.0, and the center of ZO
membership function is easily set to

czo =1/r. (14)

And the center of the DM membership function is
properly set by considering the degree of similarity
between sub-models, i.e., if the degree of similarity
between sub-models is high, cpy, is close to ¢ p;

otherwise, it is far from cz,. Then, the center of RM

membership functions is set by the above mentioned
facts:

crur =(L=cpp)/(r =1). (15)

However, the widths are practical parameters
because they are easily ranged and the output of the
fuzzy decision maker is sensitive to their values, i.e.,
if they are adjusted easily, the performance of the
fuzzy decision maker can be improved. Here, the
time-varying widths are equally set for the design
simplicity:

=o. (16)

In the design of the fuzzy adaptation rule for
deciding of o, the dominant signal 4 and the arc

signal [ are defined as

d =max(y;(k-1))-cz0,

: (a7)
[= R(k - 1)QBW - RmineBW’

where R(k—1) is the estimated range which is

calculated from (9). &gy and R,;, are respectively
the beam width and minimum range of the sensor
system. The signals are easily normalized by 1-cz,
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and R ,.Opw — Roinfpw because the mode

probability is normalized values and R_;, and the

maximum range R, are generally known in the

sensor system. Here, the range error and beam width
error are ignored.

The fuzzy reasoning method for the fuzzy decision
maker employs the simplified method whose
consequent part has a constant value, i.e., the fuzzy
rule for deciding the mode transition probabilities in
(1) easily extends a constant value to a matrix because
the mode transition probabilities have the form of a
matrix; and the fuzzy adaptation rule for deciding the
width o in (16) is directly utilized because the
width has a constant value.

The fuzzy rule is based on the idea of deciding the
mode transition probabilities in (1) according to the
existence of the dominant model. The related rule has
the following form:

R":if wis A" and py is Ay and --- and p, is A"

n

(18)

where R” denotes the n-th fuzzy rule, and p;}

that comprises the consequent part is expressed by

py b2 Py
py=| TR (19)
Py Py ' Pj
where
1/r, n=0
Pj =19 Pmax> n+z0 and j=n,(20)

(1_pmax)/(r‘1), n=0 and Jj#n
and (21) shows the proposed fuzzy rule

R: i My is ZO and py is ZO and
and . is ZO then pljng

R': if 44 is bigger than DM and u,

is smaller than RM and and u,

is smaller than RM then p;= p}j 2n
R?: if pp is bigger than DM and 14

is smaller than RM and and 4

is smaller than RM then p;= p,jz-

Table 1. Proposed fuzzy adaptation rule.

o~ s M B
DS 09 08 07
DM 06 05 04
DB 03 02 0.1

R":if u, is bigger than DM and 1y

is smaller than RM and and .,

is smaller than RM then p; = pj.

The equation has only »+1 rules and includes the
following rules: if the dominant model exists, the
values of the corresponding column in (1) are
increased in order to strongly reflect the
corresponding sub-model in generating the combined
state in (9); otherwise, the values of all columns are
equally assigned in order to equally reflect all sub-
models. It enables that the adjusted mode transition
probabilities are expressed by the form of the
weighted sum of the consequent parts.

The fuzzy adaptation rule is based on the idea of
deciding the width o in (16) according to d and
{ in (17). The related rule has the following form:

R™:if D is B" and L is By then oc=c",

(22)
where R™(m=1,2,...,9) denotes the m -th fuzzy
adaptation rule, D and L are respectively the
normalized values of 4 and /, B" and By are

linguistic terms, and o™ is the consequent part. The
widths for D and L are set to o, and o3

respectively and Table 1 shows the proposed fuzzy
adaptation rule.

The table has only nine rules and includes the
following rules: if D or L are increased in the cases
that a dominant model is growing or the measurement
noise is increasing, the width should be decreased in
order to decrease the mixing rate of basis sub-models
or compensate the range effect in (8); otherwise, the
width should be increased. The outputs use the value
that has a same difference satisfying a normal fuzzy
partition condition of 0< ¢ <1, which is related to
Fig. 3. It enables that the fuzzy decision maker has a
more optimal parameter.

The fuzzy defuzzification related to the fuzzy rule
is expressed by the following form:

2 WPy
py (k) =", (23)

Z Wy
n=0
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where

w, =1/, (s =1)). (24)
=1

This fuzzy decision maker replaces the time-
invariant py; in (1)-(3) to the time-varying p; (k)

in (23). It enables to let the AFIMM algorithm have
better performance than that of the conventional IMM
based algorithm.

Consequently, the fuzzy decision maker has a
simply composed structure and easily determined
parameters as well as more robust performance. Note
that they solve the problems of both more robust
performance and an easy design procedure in the real
system application of the IMM based algorithm.

From the above mentioned procedure, the AFIMM
algorithm, which is based on the basis sub-models
defined by considering the maneuvering property and
the time-varying mode transition probabilities
designed by using the mode probabilities as the inputs
of the fuzzy decision maker whose widths are adjusted,
has been designed.

4. SIMULATION RESULTS

The performance of the AFIMM algorithm is tested
with the problem of tracking a radar target moving,
which is described by the constant velocity flight and
the coordinated turn flight in the horizontal plane. It
was also shown in [7,10].

The process equations, which are related to the
constant velocity flight and the coordinated turn flight
of the radar target, are defined as

1 T 0 0 7%/2
x(k+1)= g (1) (1) ;x(k)+ T2T/2 vy, (25)
0 0 0 1 T
1 sinoT/w 0 —(-cosel)/w
x(k+1)= 0 cosol 0 Tsina)T )
0 (I-coswl)jw 1 sinoT/®
0 sin@T 0 cosoT
7%/2
T
“ 2 h (k). (26)
T

The state vector is defined as

x=[¢ & 7 7], @7)

where &, &
velocity of target with respect to x-axis, and 7, 7

are respectively the position and

are respectively the position and velocity of target
with respect to y-axis in Cartesian coordinates.
The measurement equation is defined as

1 0

00 1 (28)

2(k) = { g}x(k) +wik).

The simulation scenario of the maneuvering target
is designed as follows:

A nonmaneuvering flight during scan 1 to 20 with a
speed of 300m/s; a 180° turning flight during scan
21 to 33 with a tuming rate of 3.74°/s (2g
acceleration); a nonmaneuvering flight during scan 34
to 53; a —180° turning flight during scan 54 to 66
with a turning rate of -3.74°/s; a nonmaneuvering
flight during scan 67 to 86; a 180° turning flight
during scan 87 to 112 with a turning rate of 1.87°/s;
finally, a nonmaneuvering flight during scan 113 to
132,

In order to compare the proposed AFIMM
algorithm with conventional IMM based algorithms,
an IMM1 with no knowledge, an IMM2 with a
heuristic knowledge and a FIMM [7] are considered.
The initial state of target in Cartesian coordinates is
determined by

x(0)=[30000 —172 30000 -246]" .

The process noise of a true system is zero and the
true trajectory is shown in Fig. 4.

The sampling period of a sensor system is
determined by T =3.5. The standard deviation of
measurement noise and the beam width in the sensor
system are determined by ROgy and Gpy =0.1°

respectively. Here, R is the range.

&m] x10*

Fig. 4. True trajectory of maneuvering target.
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Table 2. Parameters of algorithms.

IMM1 IMM2 FIMM AFIMM
p; = p;= 47 ©0)= P 0)=
g [[033 033 03377095 005 0.05]| [033 033 033 033 033 0.33
033 033 0330025 070 025|| |033 033 033 033 033 033
033 033 033][|0.025 025 0.70|| [033 033 033 033 033 033
, cpp =0.66, & =033 cpps =0.66
Fuzzy's ) ) Doy = 0.98 Prmax = 0.98
[eps =0.0 cpy =0.5 cpg =1.0 |
Adaptive
Fuzzy’s - - - [65=0.0 ¢}y =05 cy=1.0]
0y =05, 03=05

In order to track the maneuvering target, the
number of basis sub-models is =3, which is
determined by

M=[a)1 =0, w,=2g, s :—2g]T.
The noise covariance is
/4 T3)2
2 1/)2
0 0
0 0

0 0

0o 0
T*/a T3 )2
T2 1)

2

Ve

o 29)

where o, =0.004.
The standard deviation of measurement noise in the
filter is determined by ﬁﬁBW.

The above parameters are equally applied to all
algorithms. The other parameters are given in Table 2.

The performance of the AFIMM is tested by 100
times Monte Carlo simulation. The results are shown
in Figs. 5-11. These are RMSE or RMS values.

120

== IMM1
— - IMM2
— AFIMM ||
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£ m]

1}

. L . L 1
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Time [sec]

. L . L
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Fig. 5. RMSE of target position ( £ -axis).

Figs. 5 and 6 respectively show the RMSE of target
position and velocity with respect to & -axis. And

Figs. 7 and 8 respectively show the RMSE of target
position and velocity with respect to 7 -axis. While

the performances of all algorithms have the relation of
IMM1 < AFIMM <IMM?2 in the basis sub-model
matched case, they have the relation of IMM2 <

50

-- IMM1
— - IMM2
— AFIMM

a5+

g, Imss)

. )
250 300
Time [sec]

200
Fig. 6. RMSE of target velocity (£ -axis).
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o
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L L 1 1
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Fig. 7. RMSE of target position ( 77 -axis).
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Fig. 8. RMSE of target velocity (77 -axis).

Table 3. Comparison of performances and CPU time.

: CPU

{felavg e avg Iﬂe’avg Iﬁelavg Eime

secC

MM | l18.258] 65 241 19.40m| 28
M2 (ggﬁ%) éﬁ:éﬁ% (éiigé% éiﬁégi) 0.0048
o |20 16257 16201
Tk R R e

IMM1 < AFIMM in the mismatched case during
scans 87 to 112. These are caused by the facts that the
AFIMM has the time-varying probabilities and
membership function widths while the IMMI1 and
IMM2 have the time-invariant mode transition
probabilities. These mean that AFIMM is most robust
in terms of performances with respect to the overall
target maneuvering because the basis sub-model
selected from basis sub-model candidates in (12) and
the fuzzy decision maker with time-varying mode
transition probabilities in (23) act well.

Table 3 shows the numerical comparison of the
AFIMM and the conventional IMM based algorithms.

el [

values of both the average values of RMSE in the
mismatched case and the average values of RMSE in
the matched case. In parentheses, they are only the
average values of RMSE in the mismatched case.
These mean that the AFIMM is more effective than
the other algorithms in the uncertain target
maneuvering. And CPU time is the average value of
RMS value. In terms of the performances, the position
performances of the AFIMM are better than the other
algorithms. Especially, the velocity performances of
the AFIMM are superior to the other algorithms. And
in terms of one cycle computing resources, the fuzzy

g and |'7€|avg’ ﬂelavg are the average

L ! L L L L
0 50 100 150 200 250 300 350 400 450 500
Time [sec]

Fig. 9. RMS value of p;; (FIMM).

] _

0 '

L L . . L ) .
ul 50 100 150 200 250 300 350 400 450 500
Time [sec]

Fig. 10. RMS value of p;; (AFIMM).

decision maker of the AFIMM requires the computing
resource equivalent to that of one sub-model in the
IMM algorithm. Therefore, the AFIMM and FIMM
algorithms require the computing resources of 7 +1
sub-models while the other algorithms may require
the computing resources of more than r+1 sub-
models in order to get the same performances in
general. These values quantitatively verify that
AFIMM is most effective in terms of both computing
resources and performances with respect to the overall
target maneuvering.

Figs. 9 and 10 show the diagonal RMS value of the
mode transition probabilities of the FIMM and the
AFIMM respectively. The AFIMM is effectively
adjusting the mode transition probabilities with
respect to the change of the target maneuvering. The
AFIMM is correctly distinguishing a dominant sub-
model from the sub-models and reflecting the
dominant rate of the corresponding sub-model in
generating the combined state in all cases in which the
dominant sub-model exists, while the FIMM is
incorrectly distinguishing a dominant sub-model from
the sub-models in the long-range maneuvering case.
These mean that the fuzzy decision maker with the
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Fig. 11. RMS value of membership function width.

time-varying membership function width from (22)
has more optimal parameters than that of the FIMM.

Fig. 11 shows the RMS value of the time-varying
membership function width from (22). The AFIMM
algorithm is adapting well with respect to the changes
of the target maneuvering and measurement noise.
The trend of the width is well matching with that of
the dominant model in Fig. 10. In the case that the
dominant sub-model exists, the width is decreased in
order to decrease the mixing rate of basis sub-models
or compensate the range effect in (8) whether the
basis sub-model is matched or not. This means that
the width decisioner using the dominant signal and the
arc signal in (17) is valid.

Although the comparisons are not executed under
the same conditions with respect to the IMM based
algorithms because there does not yet exist the
algorithm capable of solving all the problems in the
real system application of the IMM based algorithm,
they show well that the AFIMM algorithm has
meaningful terms.

5. CONCLUSIONS

In this paper, the adaptive fuzzy interacting
multiple model algorithm, which is based on the basis
sub-models defined by considering the maneuvering
property and the time-varying mode transition
probabilities designed by using the mode probabilities
as the inputs of the fuzzy decision maker whose
widths are adjusted, has been proposed.

In the first phase of the design procedure, the
practical definition method of the basis sub-models
defined by considering the maneuvering property, has
been described in order to let the algorithm have less
computing resources.

In the second phase of the design procedure, the
easy design method of the time-varying mode
transition probabilities designed by using the mode
probability as the input of the fuzzy decision maker
whose widths are adjusted, has been described in

order to let the algorithm have both more robust
performance and an easy design procedure.

The proposed algorithm has four major advantages:
1) it has less computing resources because the number
of basis sub-models is small 2) it has more robust
performance with respect to the various target
maneuvering and the time-varying measurement noise
because the mode transition probabilities are adjusted
by the fuzzy decision maker whose widths are
adjusted 3) it has an easy fuzzy partition and an easy
fuzzy rule because the mode probabilities are
normalized values and the sum of them is 1.0, and 4)
it easily extends the simplified fuzzy reasoning
method because the mode transition probabilities have
the form of a matrix.

To verify the performance of the proposed
algorithm, radar target tracking has been performed.
The simulation results have shown that the proposed
AFIMM algorithm effectively solves the problems
such as good and robust performance, less computing
resources, and easy design procedures in the real
system application of the IMM based algorithm. With
the Monte Carlo simulation, the results have
guaranteed the performances of the AFIMM algorithm.
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