• Title/Summary/Keyword: Adaptive finite element method

Search Result 171, Processing Time 0.031 seconds

Haptic Simulation for Deformable Object with s-FEM (s-FEM을 이용한 변형체 햅틱 시뮬레이션)

  • Jun Seong-Ki;Choi Jin-Bok;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

An Adaptive Finite Element Method for Semiconductor Device Analysis (반도체 소자 해석을 위한 적응 유한요소법)

  • 최경;경종민;한민구;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.205-213
    • /
    • 1988
  • It has been very difficult to solve the semiconductor problems by numerical analysis techique due to the strong nonlinearity of the governing equations. Thus, we proposed a double structured adaptive refinement scheme to the finite element analysis of semiconductor devices, which guarantees a succesive convergency and gives better quality to the solutions.i.e., in the first step, the main factor of divergence in the current continuity equation is eliminated and the next, the solution quality is improved by reducing the discontinuity of current. The result of test application to the GaAs MESFET model shows that the proposed method is much dffective and efficient in the numerical analysis of semiconductor.

Numerical Simulation of Corona Streamer Using Adaptive Mesh Generation and FEM-FCT Method (적응요소분할기법과 FEM-FCT를 이용한 코로나 스트리머 해석)

  • Min, Woong-Gee;Kim, Hyeong-Seok;Lee, Seok-Hyun;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2044-2046
    • /
    • 1999
  • In this paper, the propagation of corona streamer was simulated using finite element method(FEM) combined with Flux-Corrected Transport(FCT) algorithm. To obtain more effective grid distribution, the adaptive mesh generation scheme was also employed. The employed adaptive scheme can refine the mesh where needed. In addition, it is possible to coarsen the unnecessarily dense mesh. Two models were analyzed with proposed method. And the results are shown.

  • PDF

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

Adaptive Finite Element Analysis of Shock-induced Combustion (충격파를 동반한 연소현상에 관한 적응 격자 유한요소법 해석)

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.444-449
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction front is established if the the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger.

  • PDF

Position control of two link flexible manipulator using Timoshenko beam model (Timoshenko beam 모델을 이용한 두개의 링크를 갖는 유연성 매니퓰레이터의 위치 제어)

  • 김기환;강경운;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.382-387
    • /
    • 1990
  • In this paper, the dynamic modeling and tip position of rotating Timoshenko beam analyzed by means of FEM (finite element method) and Hyperstability MRAC(model referenced adaptive control) technique of each other. The governing equations of the rotating beams are drived from Hamilton's principle. The dynamic model of this multi-link is drived by Lagrange approach. The shear deformation and rotary inertia are incorporated into a finite element model for determining the bending frequencies of the rotating beam. Simulation results for uniform cantilever beams by using the MRAC are compared with the available results. It will be shown that the proposed method offers an accurate and effective one to solve the free vibration problems of rotating beams' stability.

  • PDF

Finite Element Springback Analysis of Vertically-Walled Auto-Body Part (수직벽을 가진 자동차 부품 성형공정의 스프링백 유한요소 해석)

  • 이두환;윤치상;신철수;조원석;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.574-581
    • /
    • 2000
  • A vertically-walled auto-body part is one of the most difficult stamping parts because of angle change, wall curl, and twisting of the blank after springback as well as fracture and wrinkle. In this study, computational simulations of the vertically-walled auto-body part are carried out focusing on angle change, wall curl, and twisting after springback. Binderwrap blank shape is used in forming analysis for precise initial contacts between punch and blank. An adaptive mesh method is used in springback analysis for precise calculation of bending moments. In springback analysis, the differences of 2 and 3 dimensional analysis are compared and the effects of blank holdig force and friction coefficient are evaluated. In order to verify the validity of simulation results, they are compared with measured ones. The predicted thickness distribution and formed shape are agreed well with those of the measurement. The Predicted springback amount is less than that of the measurement.

  • PDF

Analysis of large welded structures by using an automatic mesh generation (자동 요소 생성법을 이용한 대형 용접구조물의 해석)

  • 양영수;이세환
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.98-105
    • /
    • 1998
  • The accuracy of the finite element method depends upon the mesh that is used in the analysis. The temperature around the arc is higher than the melting point of the materials, and it drops sharply in the regions just away from the arc. This requires an extremely fine mesh in the confined high temperature region to predict the temperature accurately in that region. But the computational time increases with the fineness of mesh. Since fine mesh is required only around the arc source, adaptivity of the input mesh according to the position of the arc source is efficient. The remeshing technique gives a fine mesh in the high temperature region around the arc and a coarse mesh in other region at any time step. With this it is possible to achieve desired accuracy with less computation time. In this study a transient adaptive mesh, remeshing technique, is developed and calculated temperature for a sample problem.

  • PDF

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).