• Title/Summary/Keyword: Adaptive boosting

Search Result 43, Processing Time 0.028 seconds

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

A Simple Speech/Non-speech Classifier Using Adaptive Boosting

  • Kwon, Oh-Wook;Lee, Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.124-132
    • /
    • 2003
  • We propose a new method for speech/non-speech classifiers based on concepts of the adaptive boosting (AdaBoost) algorithm in order to detect speech for robust speech recognition. The method uses a combination of simple base classifiers through the AdaBoost algorithm and a set of optimized speech features combined with spectral subtraction. The key benefits of this method are the simple implementation, low computational complexity and the avoidance of the over-fitting problem. We checked the validity of the method by comparing its performance with the speech/non-speech classifier used in a standard voice activity detector. For speech recognition purpose, additional performance improvements were achieved by the adoption of new features including speech band energies and MFCC-based spectral distortion. For the same false alarm rate, the method reduced 20-50% of miss errors.

Image Adaptive LCD Backlight Boosting and Dimming For Perceptual Image Quality Enhancement (감성 화질 향상을 위한 이미지 적응형 LCD 백라이트 부스팅 및 디밍)

  • Lee, Chulhee;You, Jaehee
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.860-873
    • /
    • 2019
  • LCD backlight boosting and the integration of boosting and dimming are proposed based on image analysis to maximize perceptual image qualities and to reduce display system power. Based on the histogram of the image data, methods for selecting an image suitable for boosting and for adjusting the optimum backlight brightness are proposed. A comprehensive combined optimization method of LCD backlight boosting, dimming and bypass based on image characteristics is also described. Perceptual image quality enhancement and power consumption are evaluated based on well known image databases. Average subjective image quality is improved by 24.8%, RMS contrast is improved more than 20%, and average power consumption is reduced by 15.94% compared to conventional uniform boosting.

Packer Identification Using Adaptive Boosting Algorithm (Adaptive Boosting을 사용한 패커 식별 방법 연구)

  • Jang, Yun-Hwan;Park, Seong-Jun;Park, Yongsu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.169-177
    • /
    • 2020
  • Malware analysis is one of the important concerns of computer security, and advances in analysis techniques have become important for computer security. In the past, the signature-based method was used to detect malware. However, as the percentage of packed malware increased, it became more difficult to detect using the conventional method. In this paper, we propose a method for identifying packers of packed programs using machine learning. The proposed method parses the packed program to extract specific PE information that can identify the packer and identifies the packer using the Adaptive Boosting algorithm among the machine learning models. To verify the accuracy of the proposed method, we collected and tested 391 programs packed with 12 types of packers and found that the packers were identified with an accuracy of about 99.2%. In addition, we presented the results of identification using PEiD, a signature-based PE identification tool, and existing machine learning method. The proposed method shows better performance in terms of accuracy and speed in identifying packers than existing methods.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

A Face-Detection Postprocessing Scheme Using a Geometric Analysis for Multimedia Applications

  • Jang, Kyounghoon;Cho, Hosang;Kim, Chang-Wan;Kang, Bongsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2013
  • Human faces have been broadly studied in digital image and video processing fields. An appearance-based method, the adaptive boosting learning algorithm using integral image representations has been successfully employed for face detection, taking advantage of the feature extraction's low computational complexity. In this paper, we propose a face-detection postprocessing method that equalizes instantaneous facial regions in an efficient hardware architecture for use in real-time multimedia applications. The proposed system requires low hardware resources and exhibits robust performance in terms of the movements, zooming, and classification of faces. A series of experimental results obtained using video sequences collected under dynamic conditions are discussed.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

A Method for Deciding Permission of the ATM Using Face Detection (사용자 얼굴 검출을 이용한 ATM 사용 허가 판별 방법)

  • Lee, Jung-hwa;Kim, Tae-hyung;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.403-406
    • /
    • 2009
  • In this paper, we propose a method for deciding permission from the ATM(Automated Teller Machine) using face detection. First, we extract skin areas and make candidate face images from an input image, and then detect a face using Adaboost(Adaptive Boosting) algorithm. Next, proposed method executes a template matching for making a decision on whether to wear accessories like sunglasses or a mask in detected face image. Finally, this method decides whether to permit ATM service using this result. Experimental results show that proposed method performed well at indoors ATM environment for detecting whether to wear accessories.

  • PDF

Adaptive boosting in ensembles for outlier detection: Base learner selection and fusion via local domain competence

  • Bii, Joash Kiprotich;Rimiru, Richard;Mwangi, Ronald Waweru
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.886-898
    • /
    • 2020
  • Unusual data patterns or outliers can be generated because of human errors, incorrect measurements, or malicious activities. Detecting outliers is a difficult task that requires complex ensembles. An ideal outlier detection ensemble should consider the strengths of individual base detectors while carefully combining their outputs to create a strong overall ensemble and achieve unbiased accuracy with minimal variance. Selecting and combining the outputs of dissimilar base learners is a challenging task. This paper proposes a model that utilizes heterogeneous base learners. It adaptively boosts the outcomes of preceding learners in the first phase by assigning weights and identifying high-performing learners based on their local domains, and then carefully fuses their outcomes in the second phase to improve overall accuracy. Experimental results from 10 benchmark datasets are used to train and test the proposed model. To investigate its accuracy in terms of separating outliers from inliers, the proposed model is tested and evaluated using accuracy metrics. The analyzed data are presented as crosstabs and percentages, followed by a descriptive method for synthesis and interpretation.