• Title/Summary/Keyword: Adaptive applications

Search Result 863, Processing Time 0.026 seconds

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

Adaptive Intra Fast Algorithm of H.264 for Video Surveillance (보안 영상 시스템에 적합한 H.264의 적응적 인트라 고속 알고리즘)

  • Jang, Ki-Young;Kim, Eung-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1055-1061
    • /
    • 2008
  • H.264 is the prominent video coding standard in various applications such as real-time streaming and digital multimedia broadcasting, since it provides enhanced compression performance, error resilience tools, and network adaptation. Compression efficiency of H.264 has been improved, however, it requires more computing and memory access than traditional methods. In this paper we proposed adaptive intra fast algorithm for real-time video surveillance system reducing the encoding complexity of H264/A VC. For this aim, temporal interrelationship between macroblock in the previous and the current frame is used to decide the encoding mode of macroblock fast. As a result, though video quality was deteriorated a little, less than 0.04dB, and bit rate was somewhat increased in suggested method, however, proposed method improved encoding time significantly and, in particular, encoding time of an image with little changes of neighboring background such as surveillance video was more shortened than traditional methods.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

Adaptive Hybrid Fingerprint Matching Method Based on Minutiae and Filterbank (특징점과 필터뱅크에 기반한 적응적 혼합형 지문정합 방법)

  • 정석재;박상현;문성림;김동윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.959-967
    • /
    • 2004
  • Jain et al. proposed the hybrid matching method which was combined the minutia-based matching method and the filter-bank based matching method. And, their experimental results proved the hybrid matching method was more effective than each of them. However, this hybrid method cannot utilize each peculiar advantage of two methods. The reason is that it gets the matching score by simply summing up each weighted matching score after executing two methods individually. In this paper, we propose new hybrid matching method. It mixes two matching methods during the feature extraction process. This new hybrid method has lower ERR than the filter-bank based method and higher ERR than the minutia-based method. So, we propose the adaptive hybrid scoring method, which selects the matching score in order to preserve the characteristics of two matching methods. Using this method, we can get lower ERR than the hybrid matcher by Jain et al. Experimental results indicate that the proposed methods can improve the matching performance up to about 1% in ERR.

Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm (종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축)

  • Yoo Ji-Oh;Kim Kyung-Joong;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1569-1580
    • /
    • 2004
  • One commonly used approach to deal with uncertainty is Bayesian network which represents joint probability distributions of domain. There are some attempts to team the structure of Bayesian networks automatically and recently many researchers design structures of Bayesian network using evolutionary algorithm. However, most of them use the only one fittest solution in the last generation. Because it is difficult to combine all the important factors into a single evaluation function, the best solution is often biased and less adaptive. In this paper, we present a method of generating diverse Bayesian network structures through fitness sharing and combining them by Bayesian method for adaptive inference. In order to evaluate performance, we conduct experiments on learning Bayesian networks with artificially generated data from ASIA and ALARM networks. According to the experiments with diverse conditions, the proposed method provides with better robustness and adaptation for handling uncertainty.

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.

Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically (경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘)

  • 신광철;한상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1072-1079
    • /
    • 2003
  • This study is purported for suggesting a new clustering algorithm that enables incremental categorization of numerous documents. The suggested algorithm adopts the natures of the spherical k-means algorithm, which clusters a mass amount of high-dimensional documents, and the fuzzy ART(adaptive resonance theory) neural network, which performs clustering incrementally. In short, the suggested algorithm is a combination of the spherical k-means vector space model and concept vector and fuzzy ART vigilance parameter. The new algorithm not only supports incremental clustering and automatically sets the appropriate number of clusters, but also solves the current problems of overfitting caused by outlier and noise. Additionally, concerning the objective function value, which measures the cluster's coherence that is used to evaluate the quality of produced clusters, tests on the CLASSIC3 data set showed that the newly suggested algorithm works better than the spherical k-means by 8.04% in average.

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks (점증적 학습 퍼지 신경망을 이용한 적응 분류 모델)

  • Rhee, Hyun-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.736-741
    • /
    • 2006
  • The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.

Adaptive Clustering based Sparse Representation for Image Denoising (적응 군집화 기반 희소 부호화에 의한 영상 잡음 제거)

  • Kim, Seehyun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.910-916
    • /
    • 2019
  • Non-local similarity of natural images is one of highly exploited features in various applications dealing with images. Unique edges, texture, and pattern of the images are frequently repeated over the entire image. Once the similar image blocks are classified into a cluster, representative features of the image blocks can be extracted from the cluster. The bigger the size of the cluster is the better the additive white noise can be separated. Denoising is one of major research topics in the image processing field suppressing the additive noise. In this paper, a denoising algorithm is proposed which first clusters the noisy image blocks based on similarity, extracts the feature of the cluster, and finally recovers the original image. Performance experiments with several images under various noise strengths show that the proposed algorithm recovers the details of the image such as edges, texture, and patterns while outperforming the previous methods in terms of PSNR in removing the additive Gaussian noise.