• Title/Summary/Keyword: Adaptive Time Step Control

Search Result 65, Processing Time 0.023 seconds

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Adaptive and Digital Autopilot Design for Nonlinear Ship-to-Ship Missiles (비선형 함대함 미사일의 적응 디지털 제어기 설계)

  • Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.619-621
    • /
    • 2005
  • This paper proposes apractical design method for ship-to-ship missiles' autopilot. When the pre-designed analogue autopilot is implemented in digital way, theygenerally suffer from severe performance degradation and instability problem even for a sufficiently small sampling time. Also, aerodynamic uncertainties can affect the overall stability and this happens more severely when the nonlinear autopilot is digitally implemented. In order to realize a practical autopilot, two main issues, digital implementation problem and compensation for the aerodynamic uncertainties, are considered in this paper. MIMO (multi-input multi-output) nonlinear autopilot is presented first and the input and output of the missile are discretized for implementation. In this step, the discretization effect is compensated by designing an additional control input. Finally, we design a parameter adaptation law to compensate the control performance. Stability analysis and 6-DOF (degree-of-freedom) simulations are presented to verify the proposed adaptive autopilot.

  • PDF

Analysis of bone-remodeling by the influence of external fixator with FEM (FEM을 이용한 외부고정구 영향에 의한 골-재형성에 대한 해석)

  • 김영은;이원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.436-444
    • /
    • 1991
  • A computational method has been developed to analyze the bone-remodeling induced by external fixator. The method was based on the Finite Element Method (FEM) in combination with numerical formulation of adaptive bone-remodeling theories. As a feed-back control variable, compressive strain and effective stress were used to determine the surface remodeling and internal (density) remodeling respectively. Surface remodeling and internal remodeling were combined at each time step to predict the rel situation. A noticeable shape and density change were detected at the region between two pins and density change was decreased with time increment. At final time step, the shape and density distribution were converged closely to its original intact bone model. Similar change was detected in stress distribution. The altered stress distribution due to the pin and external fixator converged to the intact stress distribution with time.

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

The Improvement of Adaptive Transversal Filter with Data-Recycling LMS Algorithms Convergence Speed (데이터-재순환 최소 평균 자승 알고리즘을 이용한 적응 횡단선 필터의 수렴속도 개선)

  • Oh, Seung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • In this paper, an efficient signal interference control technique to improve the convergence speed of Adaptive transversal filter with LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the average squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS Algorithms.

  • PDF

The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum (직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • In this paper, an efficient signal interference control technique to improve the high convergence speed of LMS algorithms is introduced in the adaptive transversal filter of DS/SS. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is analyzed to prove theoretically the improvement of high convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Also, an increase in the stop-size parameter ${\mu}$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling which is downed the rate of convergence of the adaptive equalizer. Increasing the steady-state value of the average squared error, proposed algorithm also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

LEARNING PERFORMANCE AND DESIGN OF AN ADAPTIVE CONTROL FUCTION GENERATOR: CMAC(Cerebellar Model Arithmetic Controller)

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.125-139
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, it is necessary to analyze the effects of the CMAC control parameters on the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with pre specified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

Self-Tuning PID Control of Systems with Time-Varying Delays (시변 지연시간이 존재하는 시스템의 자기동조 PID 제어)

  • 남현도;안동준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 1990
  • In this paper, we propose a self-tuning PID controller for unknown systems with time-varying delay. Using pole placement equations, we derive the controller that can be extended to the multi-step time delay case. The time-varying delays are estimated by a prediction error delay method using multiple predictors. Since the order of the estimation vector is not increased, the persistant exciting condition of control input is alleviated. Since the least square method gives biased parameter estimates for colored noise cases, the recursive instrumental variable method is used to estimate system parameters. The computational burden of the proposed method is less than the conventional adaptive methods. Computer simulations are performed to illustrate the efficiency of the proposed method.

  • PDF

Effects of Sensory Integration Therapy on Sensory. Motor Development and Adaptive Behavior of Cerebral Palsy Children (감각통합치료가 뇌성마비 아동의 감각.운동발달 및 적응행동에 미치는 영향)

  • Kwon, Hye-Jeoung
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.977-987
    • /
    • 2001
  • The purpose of this study was to examine the effects of sensory integration therapy (SIT) on sensory' motor development and adaptive behavior of cerebral palsy children. The design of this study was quasi experiments with a non-equivalent pre- and post-test control design. Subjects of the study were arbitrarily chosen based on predetermined selection criteria among the cerebral palsy children who were treated as out-patients at two rehabilitation hospitals one in Seoul, and the other in Kyunggi-do. The study was conducted between early April and late July in 2000. Fifteen children were in the experimental group and eleven in the control group. The allocation was done based on ease of experimental treatment. A five-step SIT program was devised from a combination of SIT programs suggested by Ayres(1985) and Finks(1989), and an author-designed SIT program for cerebral palsy children. The experimental group was subjected to 20 to 30 minutes of SIT per session. two sessions a week for ten -week period. The effects of SIT were measured with respect to 9 sub-areas that can be administered to cerebral palsy children out of a total of 17 sub-areas in the Southern California Sensory Integration Test (SCSIT) developed by Ayres (1980). In addition. the scale developed by Russell (1993) for Gross Motor Function Measure (GMFM). and Perception Motor Development Test developed by 中司利一 et al.(1987) were also applied. Adaptive behavior was analyzed using guidelines in two unpublished documents - School-Age Checklist for Occupational Therapy by the Wakefield Occupational Therapy Associates, and the OTA-Watertown Clinical Assessment by the Watertown Occupational Therapy Associates-, and an author-developed Adaptive Behavior Checklist. Collected data were statistically analyzed by SPSS PC for chi square test, Mann-Whitney test, Wilcoxon signed rank test, and paired t-test. The results were as follows: 1. In sensory development, the experimental group exhibited a score increase compared to the control group, but the difference was not statistically significant, Although the experimental group showed improvements in all. 9 sub-areas compared to the control group, only right-left discrimination exhibited statistically significant change. 2. In gross motor development, the experimental group showed improvements in score compared to the control group, but it was not statistically significant. In fine motor development, the experimental group exhibited statistically significant improvements compared to the control group. In sub-area analysis, figure synthesis showed positive change. 3. In adaptive behavior development, post-experimental adaptive behavior scores were higher compared to pre-experimental scores with statistical significance. Furthermore, sub-areas emotional behavior, perception behavior, gross-fine motor function, oral-respiration function, motor behavior, motor planning, and adaptive response exhibited higher scores after SIT. In conclusion SIT was found to be partially effective in sensory and fine motor development, effective in all adaptive behavior areas, and not effective in gross motor development. Thus, this study has shown that SIT is an effective intervention for sensory development, fine motor development, and adaptive behavior for cerebral palsy children. But, for the effectiveness of SIT on gross motor development, further studies employing longer-time experiments are recommended.

  • PDF

Performance Analysis of MIMO-OFDMA System Applying Dynamic Resource Allocation (동적 자원 할당 기법을 적용한 MIMO-OFDMA 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2008
  • The adaptive resource optimization problem in multi-input multi-output orthogonal frequency division multiple access (MIMO-OFDMA) systems is addressed. This paper, adaptive modulation and coding(AMC) and power control algorithms is proposed with SFC(Space-Frequency Coding), which aims to maximize the system capacity based on the CQI(Channel Quality Information). Firstly, power level is decided to each sub-channels with received feedback signal to noise ratio(SNR). In the second step, sub-carriers are allocated according to modulation type. Simulation results show that the proposed algorithm achieves a better performance than conventional algorithm in terms of capacity.