• Title/Summary/Keyword: Adaptive Skin Color Detection

Search Result 35, Processing Time 0.027 seconds

2-Stage Adaptive Skin Color Model for Effective Skin Color Segmentation in a Single Image (단일 영상에서 효과적인 피부색 검출을 위한 2단계 적응적 피부색 모델)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.193-196
    • /
    • 2009
  • Most of studies adopt a fixed skin color model to segment skin color region in a single image. The methods, however, result in low detection rates or high false positive error rates since the distribution of skin color is varies depending on the characteristics of input image. For the effective skin color segmentation, therefore, we need a adaptive skin color model which changes the model depending on the color distribution of input image. In this paper, we propose a novel adaptive skin color segmentation algorithm consisting of 2 stages which results in both high detection rate and low false positive error rate.

  • PDF

High Speed Face Detection Using Skin Color (살색을 이용한 고속 얼굴검출 알고리즘의 개발)

  • 한영신;박동식;이칠기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.173-176
    • /
    • 2002
  • This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.

  • PDF

Human Face Detection from Still Image using Neural Networks and Adaptive Skin Color Model (신경망과 적응적 스킨 칼라 모델을 이용한 얼굴 영역 검출 기법)

  • 손정덕;고한석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.579-582
    • /
    • 1999
  • In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.

  • PDF

Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter (적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Shin, Bum-Joo
    • Journal of Information Technology Services
    • /
    • v.6 no.3
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.

Intelligent and Robust Face Detection

  • Park, Min-sick;Park, Chang-woo;Kim, Won-ha;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.641-648
    • /
    • 2001
  • A face detection in color images is important for many multimedia applications. It is first step for face recognition and can be used for classifying specific shorts. This paper describes a new method to detect faces in color images based on the skin color and hair color. This paper presents a fuzzy-based method for classifying skin color region in a complex background under varying illumination. The Fuzzy rule bases of the fuzzy system are generated using training method like a genetic algorithm(GA). We find the skin color region and hair color region using the fuzzy system and apply the convex-hull to each region and find the face from their intersection relationship. To validity the effectiveness of the proposed method, we make experiment with various cases.

  • PDF

Classification of Pornography Images Using Adaptive Skin Detection (적응적 피부색 검출을 이용한 포르노그래피 영상 분류 방법)

  • Yoon, Jong-Won;Park, Chan-Woo;Moon, Young-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.971-972
    • /
    • 2008
  • In this paper, we present a novel method for classifying pornography images using adaptive skin detection. From an input image, we detect initial skin regions and construct an adaptive skin probability density model using color information for the detected skin regions. From the skin probability density model, we extract feature vectors and train the images using Support Vector Machine to classify pornography images.

  • PDF

A Study on Adaptive Skin Extraction using a Gradient Map and Saturation Features (경사도 맵과 채도 특징을 이용한 적응적 피부영역 검출에 관한 연구)

  • Hwang, Dae-Dong;Lee, Keun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4508-4515
    • /
    • 2014
  • Real-time body detection has been researched actively. On the other hand, the detection rate of color distorted images is low because most existing detection methods use static skin color model. Therefore, this paper proposes a new method for detecting the skin color region using a gradient map and saturation features. The basic procedure of the proposed method sequentially consists of creating a gradient map, extracting a gradient feature of skin regions, noise removal using the saturation features of skin, creating a cluster for extraction regions, detecting skin regions using cluster information, and verifying the results. This method uses features other than the color to strengthen skin detection not affected by light, race, age, individual features, etc. The results of the detection rate showed that the proposed method is 10% or more higher than the traditional methods.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

Face Detection using Adaptive Skin Region Extraction (적응적 피부영역 검출을 이용한 얼굴탐지)

  • Hwang, Dae-Dong;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.35-44
    • /
    • 2010
  • In this paper, we propose a method about producing skin color model adaptively in input image and face detection. The principle process which we proposed is finding eyes candidates by applying the eye features to neural network, and then using the around color to find the distribution of color value. There will be a verification process that producing face region by using color value distribution which is detected as skin region and find mouth candidate in corresponding face region; if eye candidate and mouth candidate's connection structure is similar with face structure, then it can be judged as a face. Because this method can detect skin region adaptively by finding eyes, we solve the rate of false positive about the distorted skin color which is used by existing face detection methods. The experiment was performed about detecting the eye, the skin, the mouth and the face individually. The results revealed that the proposed technique is better than the traditional techniques.

Hand Detection for Front-Projected Interactive Displays (전방 투사 인터랙티브 디스플레이를 위한 맨손 검출)

  • Nam, Yang-Hee;Oh, Su-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1135-1142
    • /
    • 2007
  • Front-projection type displays make it difficult to apply traditional skin color detection for human hand because the projected beam not only reaches to the screen but also to the user's hand. This paper solves this problem by modeling the distortion between original image and its final camera input. Our approach improves hand detection rate by modeling of interference effect among color channels and of intra-frame intensity and also by introducing adaptive threshold for color difference in skin region.

  • PDF