• Title/Summary/Keyword: Adaptive Packet Transmission

Search Result 131, Processing Time 0.024 seconds

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

A Comparative Study and Analysis of LoRaWAN Performance in NS3

  • Arshad Farhad;Jae-Young Pyun
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2024
  • Long Range Wide Area Network (LoRaWAN) is a widely adopted Internet of Things (IoT) protocol due to its high range and lower energy consumption. LoRaWAN utilizes Adaptive Data Rate (ADR) for efficient resource (e.g., spreading factor and transmission power) management. The ADR manages these two resource parameters on the network server side and end device side. This paper focuses on analyzing the ADR and Gaussian ADR performance of LoRaWAN. We have performed NS3 simulation under a static scenario by varying the antenna height. The simulation results showed that antenna height has a significant impact on the packet delivery ratio. Higher antenna height (e.g., 50 m) has shown an improved packet success ratio when compared with lower antenna height (e.g., 10 m) in static and mobility scenarios. Based on the results, it is suggested to use the antenna at higher allevation for successful packet delivery.

Transmission of Channel Error Information over Voice Packet (음성 패킷을 이용한 채널의 에러 정보 전달)

  • 박호종;차성호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.394-400
    • /
    • 2002
  • In digital speech communications, the quality of service can be increased by speech coding scheme that is adaptive to the error rate of voice packet transmission. However, current communication protocol in cellular and internet communications does not provide the function that transmits the channel error information. To solute this problem, in this paper, new method for real-time transmission of channel error information is proposed, where channel error information is embedded in voice packet. The proposed method utilizes the pulse positions of codevector in ACELP speech codec, which results in little degradation in speech quality and low false alarm rate. The simulations with various speech data show that the proposed method meets the requirement in speech quality, detection rate, and false alarm rate.

Designs and Performance Analysis of Adaptive Transmission Scheme for Vehicle Communication System (차량 통신 시스템을 위한 적응적 전송 기법 설계 및 성능 분석)

  • Moon, Sangmi;Chu, Myeonghun;Lee, Jihye;Kwon, Soonho;Kim, Hanjong;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.3-11
    • /
    • 2016
  • Vehicle to Everything (V2X) communication has been growing to enhance traffic safety by employing advanced wireless communication systems. V2X communication is one core solution for governing and advancing future traffic safety and mobility. In this paper, we design the system level simulator (SLS) of Long Term Evolution (LTE)-based V2X and propose the adaptive transmission scheme for vehicle communication. The proposed scheme allocates the resource randomly in time and frequency domain, and transmit the message according to probability of transmission. The performance analysis is based on freeway case in periodic message transmission. Simulation results show that proposed scheme can improve the cumulative distribution function (CDF) of packet reception ratio (PRR) and average PRR.

An Adaptive Drop Marker for Edge Routers in DiffServ Networks

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.411-419
    • /
    • 2011
  • In this paper, we propose an Adaptive Regulating Drop (ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services (ASs) without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate (TPR) for aggregate TCP flows. The TPR is set larger than the current input IN packet rate of aggregate TCP flows while inversely proportional to the measured input OUT packet rate. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, the ARD marker performs random early fair remarking of their excessive IN packets to OUT packets at the aggregate flow level according to the TPR. In addition, an aggregate dropper is combined to drop some excessive IN packets fairly and constantly according to the TPR. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

Performance Analysis of TCP with Adaptive Snoop Module in Wired and Wireless Communication Environments (유/무선 통신 환경에서 적응형 Snoop 모듈을 이용한 TCP 성능 분석)

  • Kim, Myung-Jin;Lim, Sae-Hoon;Kim, Doo-Yong;Kim, Ki-Wan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • TCP works well in wired networks where packet losses mainly occur due to congestion in data traffic. In wireless networks TCP does not differentiate packet losses from transmission errors or from congestion, which could lead to degrade the network performance. Several methods have been proposed to improve TCP performance over wireless links. Among them the Snoop module working at the base station is the popular method. In this paper, it is shown that the performance of Snoop largely depends upon the transmission link errors and the amount of data traffic. Also, our research shows that the local retransmission timeout value of Snoop can affect throughput. From the simulation results we suggest how to effectively use the Snoop algorithm considering data traffic and transmission link errors. It is expected that the proposed adaptive method will contribute to improving the network performance reducing the burden of the processes for data traffic.

Adaptive Transmission Scheme According to Vehicle Density in IEEE 802.11p MAC Protocol (IEEE 802.11p MAC 프로토콜에서 차량밀도에 따른 적응전송기법)

  • Woo, Ri-Na-Ra;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.53-58
    • /
    • 2012
  • The roadside unit (RSU) collects vehicle information from vehicles in the intelligent transportation system (ITS). The vehicle density on the road within the communication range of a RSU is a time varying parameter. The higher the vehicle density, the more vehicle information can be collected. Therefore, the probability of packet collision will be raised. In this paper, an adaptive transmission scheme is proposed to improve the probability of packet reception rate by changing the data rate and transmission period according to the vehicle density. The performance of IEEE 802.11p MAC protocol that is a standard for vehicular communications is evaulated in terms of the vehicle density with the ns-2,33 simulator.

Adaptive Multi-stream Transmission Technique based on SPIHT Video Signal (SPIHT기반 비디오 신호의 적응적 멀티스트림 전송기법)

  • 강경원;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.697-703
    • /
    • 2002
  • In this paper, we propose the adaptive multi stream transmission technique based on SPIHT video signal for the highest quality service over the current Internet that does not guarantee QoS. In addition to the reliable transmission of the video stream over the asynchronous packet network, the proposed approach provides the transmission using the adaptive frame pattern control and multi steam over the TCP for continuous replay. The adaptive frame pattern control makes the transmission date scalable in accordance with the client's buffer status. Apart from this, the multi stream transmission improves the efficiency of video stream, and is robust to the network jitter problem, and maximally utilizes the bandwidth of the client's. As a result of the experiment, the DR(delay ratio) in the proposed adaptive multi-stream transmission is more close to zero than in the existing signal stream transmission, which enables the best-efforts service to be implemented.

  • PDF

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.

Adaptive Congestion Control for Effective Data Transmission in Wireless Sensor Networks (센서네트워크에서의 효율적인 데이터 전송을 위한 적응적 혼잡 제어)

  • Lee, Joa-Hyoung;Gim, Dong-Gug;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.237-244
    • /
    • 2009
  • The congestion in wireless sensor network increases the ratio of data loss and causes the delay of data. The existing congestion protocols for wireless sensor network reduces the amount of transmission by control the sampling frequency of the sensor nodes related to the congestion when the congestion has occurred and was detected. However, the control method of sampling frequency is not applicable on the situation which is sensitive to the temporal data loss. In the paper, we propose a new congestion control, ACT - Adaptive Congestion conTrol. The ACT monitors the network traffic with the queue usage and detects the congestion based on the multi level threshold of queue usage. Given network congestion, the ACT increases the efficiency of network by adaptive flow control method which adjusts the frequency of packet transmission and guarantees the fairness of packet transmission between nodes. Furthermore, ACT increases the quality of data by using the variable compression method. Through experiment, we show that ACT increases the network efficiency and guarantees the fairness to sensor nodes compared with existing method.