• Title/Summary/Keyword: Adaptive Mutation Rate

Search Result 11, Processing Time 0.022 seconds

VLSI Implementation of Adaptive mutation rate Genetic Algorithm Processor (자가적응 유전자 알고리즘 프로세서의 VLSI 구현)

  • 허인수;이주환;조민석;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper has been studied a Adaptive Mutation rate Genetic Algorithm Processor. Genetic Algorithm(GA) has some control parameters such as the probability of bit mutation or the probability of crossover. These value give a priori by the designer There exists a wide variety of values for for control parameters and it is difficult to find the best choice of these values in order to optimize the behavior of a particular GA. We proposed a Adaptive mutation rate GA within a steady-state genetic algorithm in order to provide a self-adapting mutation mechanism. In this paper, the proposed a adaptive mutation rate GAP is implemented on the FPGA board with a APEX EP20K600EBC652-3 devices. The proposed a adaptive mutation rate GAP increased the speed of finding optimal solution by about 10%, and increased probability of finding the optimal solution more than the conventional GAP

  • PDF

Adaptive Control of Strong Mutation Rate and Probability for Queen-bee Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • This paper introduces an adaptive control method of strong mutation rate and probability for queen-bee genetic algorithms. Although the queen-bee genetic algorithms have shown good performances, it had a critical problem that the strong mutation rate and probability should be selected by a trial and error method empirically. In order to solve this problem, we employed the measure of convergence and used it as a control parameter of those. Experimental results with four function optimization problems showed that our method was similar to or sometimes superior to the best result of empirical selections. This indicates that our method is very useful to practical optimization problems because it does not need time consuming trials.

Design fuzzy-genetic controller for path tracking in wheeled-mobile robot (구륜 이동 로보트의 경로 추적을 위한 Fuzzy-Genetic Controller 설계)

  • 김상원;김성희;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.512-515
    • /
    • 1997
  • In this paper the fuzzy-genetic controller for path-tracking of WMRs is proposed. Fuzzy controller is implemented to adaptive adjust the crossover rate and mutation rate, and genetic algorithm is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-genetic controller is effective.

  • PDF

Single-Machine Total Completion Time Scheduling with Position-Based Deterioration and Multiple Rate-Modifying Activities

  • Kim, Byung-Soo;Joo, Cheol-Min
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2011
  • In this paper, we study a single-machine scheduling problem with deteriorating processing time of jobs and multiple rate-modifying activities which reset deteriorated processing time to the original processing time. In this situation, the objective function is to minimize total completion time. First, we formulate an integer programming model. Since the model is difficult to solve as the size of real problem being very large, we design an improved genetic algorithm called adaptive genetic algorithm (AGA) with spontaneously adjusting crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with the conventional GAs with various combinations of crossover and mutation rates.

Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware (진화 시스템을 위한 유전자 알고리즘 프로세서의 구현)

  • 정석우;김현식;김동순;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.265-276
    • /
    • 2004
  • Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

A Study on Performance Improvement of Evolutionary Algorithms Using Reinforcement Learning (강화학습을 이용한 진화 알고리즘의 성능개선에 대한 연구)

  • 이상환;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.420-426
    • /
    • 1998
  • Evolutionary algorithms are probabilistic optimization algorithms based on the model of natural evolution. Recently the efforts to improve the performance of evolutionary algorithms have been made extensively. In this paper, we introduce the research for improving the convergence rate and search faculty of evolution algorithms by using reinforcement learning. After providing an introduction to evolution algorithms and reinforcement learning, we present adaptive genetic algorithms, reinforcement genetic programming, and reinforcement evolution strategies which are combined with reinforcement learning. Adaptive genetic algorithms generate mutation probabilities of each locus by interacting with the environment according to reinforcement learning. Reinforcement genetic programming executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. Reinforcement evolution strategies use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length.

  • PDF

A study on Adaptive Image Preprocessing Filter using Genetic Algorithm (유전알고리즘을 이용한 영상의 적응형 전처리 필터 구현에 관한 연구)

  • Koo, Ji-Hun;Lee, Seung-Young;Lee, Chong-Ho;Rhee, Phill-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2693-2695
    • /
    • 2001
  • In this paper, we present an adaptive image filter using genetic algorithm. The filter is robust to the characteristic variance of image and noise, by evolving the parameter and combination of image preprocessors properly. And we have adopted adaptive mutation strategy, which use different mutation rate for specific region of chromosome. The filter is implemented on FPGA board and controlled by host PC.

  • PDF

A Design of Controller for 4-Wheel 2-D.O.F. Mobile Robot Using Fuzzy-Genetic algorithms

  • Kim, Sangwon;Kim, Sunghoe;Sunho Cho;chongkug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.607-612
    • /
    • 1998
  • In this paper, a controller using fuzzy-genetic algorithms is proposed for pat-tracking of WMR. A fuzzy controller is implemented so as to adjust appropriate crossover rate and mutation rate. A genetic algorithms is also implemented to have adaptive adjustment of control gain during optimizing process. To check effectiveness of this algorithms, computer simulation is applied.

  • PDF

An Adaptive Genetic Algorithm for a Dynamic Lot-sizing and Dispatching Problem with Multiple Vehicle Types and Delivery Time Windows (다종의 차량과 납품시간창을 고려한 동적 로트크기 결정 및 디스패칭 문제를 위한 자율유전알고리즘)

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2011
  • This paper considers an inbound lot-sizing and outbound dispatching problem for a single product in a thirdparty logistics (3PL) distribution center. Demands are dynamic and finite over the discrete time horizon, and moreover, each demand has a delivery time window which is the time interval with the dates between the earliest and the latest delivery dates All the product amounts must be delivered to the customer in the time window. Ordered products are shipped by multiple vehicle types and the freight cost is proportional to the vehicle-types and the number of vehicles used. First, we formulate a mixed integer programming model. Since it is difficult to solve the model as the size of real problem being very large, we design a conventional genetic algorithm with a local search heuristic (HGA) and an improved genetic algorithm called adaptive genetic algorithm (AGA). AGA spontaneously adjusts crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with HGA.

Resource Allocation with Proportional Rate In Cognitive Wireless Network: An Immune Clonal Optimization Scheme

  • Chai, Zheng-Yi;Zhang, De-Xian;Zhu, Si-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1286-1302
    • /
    • 2012
  • In this paper, the resource allocation problem with proportional fairness rate in cognitive OFDM-based wireless network is studied. It aims to maximize the total system throughput subject to constraints that include total transmit power for secondary users, maximum tolerable interferences of primary users, bit error rate, and proportional fairness rate among secondary users. It is a nonlinear optimization problem, for which obtaining the optimal solution is known to be NP-hard. An efficient bio-inspired suboptimal algorithm called immune clonal optimization is proposed to solve the resource allocation problem in two steps. That is, subcarriers are firstly allocated to secondary users assuming equal power assignment and then the power allocation is performed with an improved immune clonal algorithm. Suitable immune operators such as matrix encoding and adaptive mutation are designed for resource allocation problem. Simulation results show that the proposed algorithm achieves near-optimal throughput and more satisfying proportional fairness rate among secondary users with lower computational complexity.