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Abstract 
 

In this paper, the resource allocation problem with proportional fairness rate in cognitive 
OFDM-based wireless network is studied. It aims to maximize the total system throughput 
subject to constraints that include total transmit power for secondary users, maximum 
tolerable interferences of primary users, bit error rate, and proportional fairness rate among 
secondary users. It is a nonlinear optimization problem, for which obtaining the optimal 
solution is known to be NP-hard. An efficient bio-inspired suboptimal algorithm called 
immune clonal optimization is proposed to solve the resource allocation problem in two steps. 
That is, subcarriers are firstly allocated to secondary users assuming equal power assignment 
and then the power allocation is performed with an improved immune clonal algorithm. 
Suitable immune operators such as matrix encoding and adaptive mutation are designed for 
resource allocation problem. Simulation results show that the proposed algorithm achieves 
near-optimal throughput and more satisfying proportional fairness rate among secondary users 
with lower computational complexity. 
 
 
Keywords: Immune clonal algorithm, cognitive wireless network, OFDM, proportional 
fairness rate, resource allocation, subcarrier allocation, power allocation 
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1. Introduction 

Spectrum shortage crisis is becoming more and more severe with the increasing growth of 
wireless communication demands. It was reported by Federal Communications Commission 
(FCC) that most of the licensed wireless spectrum is not currently utilized [1]. It is far more 
underutilized rather than naturally scarce [2]. Cognitive wireless network (CWN) is a kind of 
intelligent communication system, which can improve the utilization of spectrum resources to 
fulfill the requirements of spectrum-hungry applications [3][4]. According to FCC regulations 
[1][5], spectrum holes exist in the licenced spectrum, and secondary users (SUs) can share the 
spectrum bands opportunistically with primary users (PUs) under interference restriction. To 
meet this requirement, the physical layer of a CWN should be very flexible. Orthogonal 
frequency division multiplexing (OFDM) offers fascinating performance in physical layer and 
has been used in many other wireless communications[6].Hence, OFDM system has the 
inherent flexibility in resource allocation, making it the favorite to be the CWN interface. It is 
of great significance for allocating resources to secondary users in OFDM-based cognitive 
wireless network so as to use the spectrum effectively. A comprehensive survey about 
adaptive resource allocation in conventional multi-user OFDM systems can be found in [7]. In 
cognitive OFDM network, SUs and PUs co-exist in a same band, so the mutual interferences 
between them are key issues and must be fully taken into account. These interference 
constraints are the main differences between the optimization problem in OFDM-based CWN 
and the conventional (non-cognitive) multi-user OFDM systems considered in [7]. 

The resource allocation problem in OFDM-based CWN has attracted more attentions in 
recent years. A lot of works have been investigated on it with different scenarios 
[8][9][10][11][12][13]. In [8], an optimal resource allocation using integer linear 
programming was proposed, which was computationally complex. In [9], a goal programming 
approach was used to transform the problem into a single objective nonlinear optimization 
problem. In [10], it was pointed out that the resource allocation problem was a large non-linear 
integer programming problem and two heuristics were proposed. In [11], it was also exhibited 
that the resource allocation problem was a nonlinear programming problem. Computationally 
efficient suboptimal algorithms were proposed in these schemes [8][9][10][11]. In addition, 
the algorithms in [8][9][10][11] didn’t consider the proportional fairness demand among SUs. 
Actually, different SUs have different throughput requirements, which can be achieved by 
pre-defined service levels. In [12], the proportional rate constraint was added to the existing 
resource allocation problem. However, the introduction of this constraint makes the 
optimization problem more complicated thus increasing the difficulty in finding the optimal 
solution because the feasible set is not convex. In short, the resource allocation problem in 
CWN is a nonlinear optimization problem[8][9][10][11][12], for which obtaining the optimal 
solution is known to be NP-hard. The optimal resource allocation is computationally complex 
for practical applications [8][9][10][11][12]. In [9][10][11][12], it is shown that efficient 
suboptimal algorithms exhibit near-optimal performances and significantly reduce the 
computational complexity compared with the optimal solution. 

It is known that bio-inspired methods are ideal for such nonlinear optimization problems 
[13][14]. Some bio-inspired methods have been employed in conventional (non-cognitive) 
OFDM based resource allocation system, such as genetic algorithm [15][16][17] and particle 
swarm optimization [18]. It is shown that these schemes have achieved better results compared 
with normal iterative algorithms. Artificial immune system (AIS) is a kind of promising 
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computational intelligence method which draws inspiration from the human immune system 
[19]. An AIS-based optimization algorithm, called immune clonal selection algorithm[20], 
which has been widely used in engineering-oriented fields in recent years, such as network 
routing [21], job scheduling [22][23], image recognition [24][25], multi-user detection [26] 
and so on. All the successful applications prove that immune clonal selection algorithm 
performs well in the domain of optimization. 

In this study, an improved immune clonal selection algorithm is introduced to solve 
resource allocation problem in OFDM based CWN. The inspiration comes from the fact that 
clonal selection algorithm is ideal for non-liner optimization problems with a large feasible 
solution space where a quick sub-optimal solution will suffice. Also, the fact that immune 
clonal algorithm is seldom used in OFDM based CWN further deepens our inquisitiveness to 
explore this option. 

In this paper, the resource allocation problem is to maximize the system throughput, with 
constraints including SU’s total power, proportional fairness rate, bit error rate (BER) and 
maximum interference power that PU can tolerate. In [13][18], it was shown that resource 
allocation can be solved sub-optimally by separating subcarrier allocation and power 
allocation. Hence, the proposed scheme is divided into two steps. That is, subcarriers are 
firstly allocated to secondary users assuming equal power, and then the power allocation is 
performed with an improved immune clonal algorithm. Through the proportional clonal, 
mutation and clonal selection, the proposed algorithm performs a greedy search which 
reproduces antibodies and selects their improved offspring after the affinity maturation 
process. Theoretical analysis indicates that it is very suitable for the resource allocation. 
Extensive experiment results show that the performances of the proposed algorithm 
outperform the existing ones. Compared with the optimal resource allocation scheme in[8], the 
proposed one obtains very close to the throughput as the optimal algorithm does but with a 
significantly lower computational complexity. Compared with the sub-optimal proportional 
fairness resource allocation method in [12], the proposed scheme achieves high system 
throughput with more satisfying proportional fairness rate among SUs. The proposed 
algorithm exhibits a good tradeoff between system throughput maximization and proportional 
fairness rate. 

The rest of this paper is organized as follows. In Section II, the system model is described 
and the problem of resource allocation is formulated. In Section III, the proposed algorithm is 
presented. Simulation results are provided in Section IV. The conclusions (concluding 
remarks) are summarized in Section V.etwork operators and system administrators are 
interested in the mixture of traffic carried in their networks for several reasons. Knowledge 
about traffic composition is valuable for network planning, accounting, security, and traffic 
control. Traffic control includes packet scheduling and intelligent buffer management to 
provide the quality of service (QoS) needed by applications. It is necessary to determine to 
which applications packets belong, but traditional protocol layering principles restrict the 
network to processing only the IP packet header. 

2. System model  

In this paper, resource allocation of an OFDM based CWN is considered, in which a base 
station (BS) serves one primary user (PU) and M secondary users (SUs)[8][12]. The 
regulations are that the SUs can not interfere normal transmission of the PU. The signals of the 
PU and SUs can cause mutual interferences. The interference generated by PU to SUs can be 
seen as the noise power which only affects the signal-to-interference-noise-ratio (SINR) and 
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can be measured by base station (BS) which controls all users. But the interference power 
generated by SUs to the bandwidth occupied by PU cannot exceed the threshold. It is assumed 
that the channel is slowly time-varying, and the BS is assumed to have perfect channel state 
information for all SUs and subcarriers. The SUs has band of width cW Hz and total N 
subcarriers are available. In order to avoid unacceptable interference to PU, SUs have to sense 
the environment and rapidly adapt their transmission parameter values. The total throughput of 
the SUs is denoted as sumR , while mR is the throughput of secondary user m  (1 )m M  . The 
resource allocation problem can be formatted into [8][9][10][11][12]: 

1

max max
M

sum m
m

R R


               (1) 

Furthermore, let .m nb denote the throughput transmitted on subcarrier n  for user m  in a 

symbol period, while , {0,1}m n  is a subcarrier allocation indicator such that , =1m n if and only 

if subcarrier n  is allocated to secondary user m . That is: 
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Hence, from equation (1) and equation (2), it can be deduced that 
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Following [8,9,10,12], .m nb  is set to: 
2
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where    denotes the integer function, .m np  is the power allocated to secondary user m  on 

subcarrier n , ,m ng is gain from BS to user m  on subcarrier n ,   is the SNR gap which can be 

represented as =- ln(5 ) /1.5ep for an MQAM with a specified ep (bit error rate) 

[10,12,27,28].The one-sided noise power spectral density (PSD) is denoted as 0N .The 

interference power caused by the primary user to subcarrier n  at user m  is Sm, n . 

Therefore, from equation (1) ,(2),(3) and (4), it can be deduced that 
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Hence, the resource allocation problem in this paper is expressed as follows 
[8][9][10][11][12]: 
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Where, constraint (a) ensures that each subcarrier can only be allocated to one secondary user, 
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constraint(b) ensures that the total transmit power of all the SUs must be lower than totalp , 
constraint (c) ensures that the interference caused by SUs to PU cannot exceed the predefined 
threshold upper thI of primary user, In denotes the interference factor caused by SUs to PU on 

subcarrier n ,constraint (d) is the proportional rate restriction. 1 2: : ... : M    is a set of 
pre-determined values which are used to ensure proportional fairness among SUs. 

From the described above, we know that the resource allocation includes subcarrier 
allocation and power allocation. In [7], it is shown that resource allocation problem can be 
solved sub-optimally by separating subcarrier and power allocation. Therefore, we solve the 
resource allocation problem in two steps in this study. Firstly, subcarriers are assigned to SUs 
with basic proportional fairness assuming equal power. Secondly, the immune clonal 
optimization is used to allocate power ensuring maximum throughput with proportional 
fairness rate. The constraints are dealt with by repairing the solutions. 

3. Proposed Algorithm 

In this section, we describe the two-step resource allocation (subcarrier allocation and power 
allocation) scheme in detail. 

3.1 Subcarrier Allocation 

Subcarrier allocation aims to allocate subcarriers to SUs subject to the described constraints. 
Available conventional methods allocate subcarriers to SUs with maximum channel gain on it 
in order to obtain highest rate [7], which may lead to increasing interference gain for PU in the 
cognitive OFDM system, then the SUs will strongly be restricted with the transmit power of 
PU so that the SUs will not get the ideal throughput instead [29][30].So the subcarrier 
allocation algorithm proposed in [7] is not suitable for it. In this paper, the channel gain of the 
subcarrier and the mutual interferences are jointly considered. A subcarrier allocation scheme 
is presented under the interference of PU can tolerate. 

The details are as follows. 
As mentioned above, after a simple transform of equation (4), the incremental power 

.m np required for transmitting one bit to secondary user m on subcarrier n  is given 
by[31][32][33] 

.0
. 2

,

+S
2 m nbc

m n
m n

N W
p

g
  m, n     (7) 

Recalling that the notations used in here have been explained in section 2. Accordingly, the 
incremental interference .m nI  to the primary user caused by such a transmission is given by 

. .m n m n nI p I             (8) 

Here, nI denotes the interference factor caused by SUs to PU on subcarrier n . Assuming 

that mN  is the set of subcarriers assigned to secondary user m ,  is empty set, {1, 2,... }E N  

is the total subcarrier set, pn  is denoted as the subcarrier with minimum incremental power for 

SUs, In  is denoted as the subcarrier with minimum incremental interference to PU. P  is the 
total power required for transmitting to the SUs, I is the interference introduced for PU. 
Recalling that ,m nb  is denoted as the throughput (maximum number of bits) in a symbol period 

on subcarrier n  for secondary user m , while mR is the throughput of secondary user m . 
The flowchart of the subcarrier allocation algorithm is given below in Fig. 1. 
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end

, =1m nset

mNoutput

 

Fig. 1. flowchart of subcarrier allocation algorithm 

The detailed description of the algorithm is given below[31] (Step1- Step2). 
Step1.Initialization. 

set 0,mR  , 0m nb  ， mN  ， 0, 0P I  ， 

calculate . .m n m np I 、 [1, ], [1, ])m M n N （ 。 

Step2  for [1, ]m M , do the followings： 

Step2.1  find * arg min /m m mm R  , 

Step2.2  find *arg minI n m nn I  ； *arg minp n m nn p  ； 

Step2.3 if * pm n totalp p p   and * Im n thI I I   ，do the following updates: 

（1） * * *1,
Im m m nR R I I I     , 

（2） * /
I Im n nP P I I   , 

（3） * * 1,
I Im n m nb b  calculate m*I

In , m* Inp . 

（4） { }, { }m m I IN N n E E n    ,set , =1m n . 

（5）if E  ，then output mN ， subcarrier allocation is ended. otherwise，for all 

*,m m set mI
In   , m Inp  ；go to Step2.1 

Step2.4  if * Im n thI I I   or * Im n totalp p p   ，then： 
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Set * ' arg min / ( *), * * 'm m mm R a m m m m   (i.e. set *m  is the next SU with 

higher /m mR  ) , go to Step2.2. 
 

Additionally, after the subcarrier allocation, the throughput for secondary user m  is 
described as: 

2
, ,

. , 2
1 1 0

log (1 )
+S )

m mN N
m n m n

m m n m n
n n c

p g
R b

N W


 

 
   

 
 

m, n（
 (9) 

For general explanation, each SU obtains a subcarrier during the first round allocation, 
which enables the SU to achieve the highest possible /m mR  rate. After the first round 
selection, the poorest user who suffers the severest unfairness is immediately given a privilege 
to choose another subcarrier with the highest /m mR   rate among the remaining subcarriers. 
The allocation process is repeated until all the subcarriers are completely allocated. After the 
subcarrier allocation, the proportional rate fairness among secondary user is given roughly. 
The exact satisfaction of maximum system throughput, as well as the requirement of the 
proportional rate fairness, will be ultimately achieved by the following power allocation 
algorithm based on immune optimization in section 3.2. 

3.2 Power Allocation Optimization Based On Immune Clonal Algorithm 

Theoretically, the optimal power distribution scheme can be obtained by solving a set of 
nonlinear equations. But it is impractical for practical systems because of the high complexity 
and the NP-hard nature of the optimization problem [9][10][11][12]. Here, we propose a novel 
suboptimal power allocation scheme based on immune clonal algorithm. 

3.2.1 Immune Clonal Selection Theory 
The clonal selection theory [19] is used in immunology to describe the basic features of 

an immune response to an antigen stimulus. Clonal selection is a dynamic stimulation process 
of the immune system self-adaptive against antigen. According to Burnet [19], clonal selection 
occurs in accordance with the degree that a B-cell matches an antigen. A strong match causes 
much cloning of B-cell, and a weak match results in little cloning. The clonal selection 
algorithm for optimization has been popularized mainly by de Castro and Von Zuben’s 
CLONALG[20] and widely used in engineering-oriented fields[21][22][23][24][25][26]. 

These clonal selection based algorithms essentially evolve solutions by repeated process 
of cloning, affinity maturation (via mutation) and selection for candidate solutions, and 
remaining good solutions in the population. 
3.2.2 Summary of related terms in this paper 

We describe the terms in our algorithm as follows: 
(1) Antigen. In this paper, antigen refers to the power allocation problem to be solved in CWN. 
(2) Antibody and its encoding. In this paper, an antibody represents a candidate power 
allocation scheme. We adopt matrix representation rather than binary string representation 
[16][17] since the matrix encoding is clear and easy to realize for power allocation. Here, a 
M N  matrix denoted as p  is used to encode the power allocation, where the row is denoted 

as the secondary user m ( 1, 2.... )m M , column is denoted as the subcarrier n ( 1, 2.... )n N , the 

matrix element . (1 ,1 )m np m M n N     is denoted as the gained power to user m  on 

subcarrier n , that is 
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p  

In this study, p  is referred as an antibody. Antibody population 1 2( , ,...., )kA p p p is a 

k-dimensional group of antibody p , where the positive integer k is the size of antibody 

population A . . (1 ,1 )m np m M n N     is a gene bit of antibody p . 
(3) Affinity. Affinity is the fitness measurement for an antibody. For power allocation 
problems, the optimization model is described in equation (6). The affinity is a mapping of the 
value of equation (6) for a given antibody p (power allocation scheme). Because equation (6) 
is to be maximized, it can be stated that the higher affinity of an antibody has, the better the 
antibody is. 

3.2.3 Realization Of Power Allocation Based On Immune Clonal Algorithm 
In this section, we describe a novel power allocation optimization algorithm. It improves the 
population by three main operators: the proportional clonal operator, the adaptive mutation 
operator and the selection operator. The constraints are dealt with by repairing the solutions. 

The basic flowchart of power allocation based on clonal selection algorithm is described 
in Fig. 2: 

 

Clonal ( ( ))ct T tB( ) A

Mutation T (mt tC( ) B( ) ）

Selection ( 1) T ( ( )t t t A C( ) As ）

maxt t

Affnity evaluation of tC( ) 

Affnity evaluation of tA( ) 

Initialization population , 0t t A( )

 

Fig. 2. Flowchart of immune-based power allocation algorithm 

The algorithm is implemented as follows (Step1-Step7) 
Step1: Initialization 

Set the maximum evolutionary generation maxt . Set 0t  , where t is termed as current 

evolutionary generation. Create an initial antibody population ( )tA with size k in accordance 

with antibody encoding in section 3.2.2. That is, 1 2( ( ), ( ),...., )k(t) t t tA p p p（）. (1 )i i k p  is a 
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candidate power allocation scheme, ( )tA  is a set of candidate power allocation schemes. 

Here, some pre-knowledge are used to initialize the antibody ip in order to accelerate 
algorithm convergence, which is proved by the latter simulation experiments. From constraint 
(a), it is known that each subcarrier can only be allocated to one secondary user at any given 
time, which can be expressed in the matrix ip  that each column only has one non-zero 

element .m np .Recalling that mN has been determined after subcarrier allocation is finished. 

Since the total power totalp  is allocated equally for subcarrier allocation, so the element .m np of 

matrix ip must satisfy , [0, ]m
n total

N
p p

N
m . Each antibody (1 )i i k p  that satisfies the 

constraints (b) and (c) will be a candidate. 
Step2: Affinity evaluation 

Calculate the affinities of all antibodies in ( )tA according to equation (6). It is denoted 

as: 1 2( ( )) ( ( ( ), ( ( )),...., ( )kf t f t f t f tA p p p（） .Here, a higher affinity of an antibody 

( )(1 )i t i k p has, the better an antibody (power allocation scheme) is. 

Step3: Proportional Clonal cT  
In immunology, cloning means asexual propagation so that a group of identical cells can 

be descended from a single common ancestor [20]. In this study, we obtain B(t) by applying 
clonal proliferation cT  to ( )tA . It is defined as follows: 

1 2( ( )) [ ( ( )), ( ( )),...., ( ( ))]c c c c k(t) T t T t T t T t B A p p p (10） 

Here, the clonal scale iq  for each antibody (1 )i i k p  is proportional to its 

affinity ( ( ))if tp . That is, 

1

( ( ))
( ) ( )

( ( ))

i
i c k

i
i

f t
q t Int n

f t


 


p

p
 , where ( )Int  denotes the integer function, 

cn  is a given value ( )cn k . The antibody with larger affinity value (objective function value 

of equation (6)) has a larger iq . Let
1

k

i
i

z q


  , then tB( ) can be expressed 

as 1 2{ ' ( ), ' ( ),...., ' ( )}zt t t tB( ) p p p .Actually, clonal proliferation on antibody ( )i tp is to make 
multiple identical copies of it. 

Step 4: mutation Tm  

In immunology, mutation means the immune system recognizes external pattern by 
antibody gene mutation in order to gain higher affinity [19,20]. In this study, it is defined 
as T (mt tC( ) B( )）. An adaptive mutation which associates the mutation probability pm with the 

evolutionary generation is designed. That is, 
max

(1 )p p

t
m m

t
   , t  is current evolutionary 

generation, maxt  is the maximum evolutionary generation. The advantages of the mutation lie 
in its searching ability in a large scope in early evolution process while it searches in a local 
scope in latter evolution process, which will accelerate the convergence. After mutation, the 
population becomes: 

1 2{ '' ( ), '' ( ),...., '' ( )}zt t t tC( ) p p p  
In this paper, the mutation is done by exchange the non-zero elements of two columns 

with probability pm in matrix p . The proposed mutation is easy to realize and doesn’t violate 

the constraints. Obviously, it can ensure that each subcarrier is only allocated to one secondary 
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user and all antibodies generated by mutation still meet the constraints, so they are still feasible 
power allocation solutions. An example is given below where the second column and the 

1N  th column are exchanged. 'p  becomes ''p  after mutation. Actually, mutation is to 
exchange the power allocation of two secondary users and generate a new candidate power 
allocation scheme. 

1,1 1,2 1, 1 1,

2,1 2,2 2, 1 2,

1,1 1,2 1, 1 1,

,1 ,2 , 1 ,

... ......

........

' ... .... .... ....

..... ..

... .....

N N

N N

M M M N M N

M M M N M N

p p p p

p p p p

p p p p

p p p p





    


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 
 
 
 
 
 
  

p ,

1,1 1, 1 1,2 1,

2,1 2, 1 2,2 2,

1,1 1, 1 1,2 1,

,1 , 1 ,2 ,

... ......

........

'' ... .... .... ....

..... ..

... .....

N N

N N

M M N M M N

M M N M M N

p p p p

p p p p

p p p p

p p p p





    



 
 
 
 
 
 
 
  

p  

Step5：Affinity evaluation 
Calculate the affinities of all antibodies in tC( ) according to equation (6). It is defined as: 

1 2( ( )) ( ( ''( ), ( ''( )),...., ( '' )zf t f t f t f tC p p p （）. 

Step6: Clonal Selection Ts  

Clonal Selection Ts is defined as: 

1 2( 1) T ( ( ) ( ) ( ( 1), ( 1),...., 1 )kt t t t t t     A C A p p ps ） （ ） .That is, select k  antibodies having 

higher affinity from ( )tC and ( )tA  to form the next population ( 1)t A . 
Step 7: Termination Test 

If maxt  is satisfied, stop the algorithm. Output the antibody with the maximum affinity in 

( 1)t A  as the result of power allocation. Otherwise, 1t t  , go to Step 3. 
After immune clonal optimization, the power is allocated among SUs with proportional 

fairness demand. 

3.2.4 Advantages Of The Proposed Algorithm 
(1) The suitable matrix encoding is designed which is clear and easy to realize. 
(2) Initialization of antibody population with pre-knowledge accelerates the convergence. 
(3) Adaptive mutation probability combines the mutation operator with the evolutionary 
generation, which reduces the blindness of the mutation and further accelerates the 
convergence. The proper mutation method ensures that the generated antibody still meets the 
constraints. 

3.3 Computational Complexity 

The computational complexity of the proposed algorithm is composed of two parts: the 
computational complexity of subcarrier allocation and that of power allocation. From 
section3.1, we know that the subcarrier allocation has a worst computational complexity 
of ( )O N M , where N  denotes the number of subcarrier, M  denotes the number of 
secondary users. For the immune-based power allocation in section3.2, the total computational 
complexity is mainly composed of that for initialization, affinity evaluation, colnal, mutation, 
and selection. Given the population size k , colnal scale cn ( cn k )and the maximum 

generation maxt , the procedure of population initialization, affinity evaluation and proportional 

colnal (step1-step3) has the same computational complexity of ( )O k M N   in each 

generation, while the procedure of mutation, affinity evaluation, selection（step4-step6）has 
the computational complexity of ( )cO k n M N    in each generation. Hence, for each 
generation, the total computational complexity 
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is (3( ) 3( ))cO k M N k n M N      .Since cn k , according to the properties of Symbolic 

O [10,34,35,36], it can be denoted as ( ))cO n M N  .When the power allocation is finished, it 

has the total computational complexity of max( ( ))cO t n M N   . Therefore, the proposed 

algorithm has a computational complexity of max( ( ( ))cO N M O t n M N    ） . 

The computer simulations show that maxt  implicitly depends on M  and N (see section 
4.1). The more complex the search space is, the larger the number of generations should be. 
Thus, for given cn and maxt , the gradual computational complexity of the proposed algorithm 

is (O N M ） in accordance with the properties of symbolic O , which is lower than that of the 

algorithm in [12]( ( ))O N M N（ )and the algorithm in[8]( 2( )O N M ). 

4. Simulation Results And Discussion 

4.1 Experimental Environments And Parameter Settings 

The experiments are done in windows XP, MATLAB7.0 is used to program. The parameter 
settings are as follows [8][9][10][11][12]: It is assumed that the subcarrier gains ,m ng are 

outcome of identically distributed Raleigh random variables. The simulation system consists 
of one PU and M SUs. The SUs has a bandwidth of 5 MHz and consists of 64 subcarriers, each 
with a bandwidth, cW , of 0.3125 MHz. The Additive White Gaussian Noise (AWGN) 

PSD, 0N , is set to 10-8 W/Hz. The BER of SUs, ep , is set to 310 , so the   is 5 dB. The 

interference of PU to SUs, Sm, n ,is set to 610 w .In order to evaluate the algorithm performance in 

various interference constraints, the total power of SUs, totalP , ranges from 0.5W to 1.5W. The 

interference of the PU can tolerance, thI , ranges from 310 w  to 210 w .The number of SUs, M , 
ranges from 2 to 20. 

The proportional rate constraints are as same as those in[12]： 

Table 1. proportional fairness settings 

index proportional rate settings 
1 1 2 3 4: : : 1:1:1:1a     

2 1 2 3 4: : : 1: 2 : 4 : 8a     

3 1 2 3 4: : : 1:1:1: 8a     

4 1 2 3 4: : : 1:1:1:16a     

 

4.2 Sensitivity In Relation To The Immune Algorithm Parameters 

Four parameters are to be settled at the initialization phase: the antibody population size k , the 
clone population size cn , the mutation probability pm , and the maximum number of 

generations maxt . k  and cn  directly affect the computational complexity of the 

algorithm[33][34][35]. Given k  and cn  large enough, the diversity of the population can be 
enhanced and the prematurity can be avoided in some extent. But the computational 
complexity will also be very large. maxt  depends on M  and N  obviously. The more complex 
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the search space is, the larger the number of generations should be. pm  is very important for 

local search in algorithm. A larger pm  has the ability to produce more new antibodies, but it 

also has the probability to destroy some good antibodies. When pm  is too small, the 

convergence speed is not quick enough to find the best solution in appointed generations. 
Since the optimal choice is hard to determine by theoretical analysis, it is important to 

analyze the performance affected by experiments in different cases. After trial and error, the 
parameters employed in the proposed immune algorithm are: number of generations max 200t  , 

population size 10k  , clonal scale 25cn  , mutation probability =0.3pm . The algorithm run for 

maxt  generations, the antibody associated with the maximal affinity value at this point will be 
the resource allocation result. 

4.3 The Performances Of The Proposed Algorithm 

The total throughput is used to measure the performance of the proposed algorithm. The total 
throughput versus number of secondary users and maximum tolerable interference are shown 
in Fig. 1, Fig. 2 and Fig. 3. 
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Fig. 3. Antibody affinity versus evolutionary generation 

Fig. 3 shows the antibody affinity verse evolutionary generation. It can be seen that the 
individual affinity converge to the best affinity with the generation increasing, which proves 
that the proposed algorithm can realize the proportional rate among secondary users. 
Additionally, it also can be seen that the proposed algorithm converge rapidly because the 
pre-knowledge is introduced for the initialization of antibody population and the suitable 
operators are designed in the algorithm. Theoretical analysis and experimental results are well 
consistent. 

Fig. 4 shows the total throughput sumR versus the number of SUs with different thI . A total 

of 100 time samples are used for each number of secondary users. Assuming that 1totalP w , the 
other parameter settings are shown in section 4.1, the index of proportional fairness rate is set 
to 1. It can be seen from figure4, the system throughput sumR is increasing with the number of 
secondary user, which is the result of the added multi-user diversity gain. But subject to the 
constraint of subcarriers, the increasing extent is becoming rather slow. Meanwhile, the 
system total throughput sumR  increases with thI ,the higher interference thI  the PU can tolerate, 

the higher power the SUs can have, so the system total throughput sumR is becoming higher, 
which is reasonable. 
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Fig. 5 shows the total throughput sumR versus the maximum tolerable interference 

power thI with different totalP . Here M=4, the other parameter settings are shown in section 4.1, 

the index of proportional rate is set to 1. As to be expected, sumR increases with thI . It also can 

be seen that the total throughput increases with the increasing totalP .The difference is larger for 

small values of thI , but the difference is becoming minor with increasing thI . The reason is that 
with the increasing interference, the system becomes interference-limited, and the available 
transmission power for SUs isn’t a major factor. For a given totalP , the throughput reaches a 
limit, this is because that the system is no longer subject to interference power that primary 
user can tolerate. 
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Fig. 4. total throughputs versus number of secondary users 
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Fig. 5 total throughput versus maximum tolerable interference thI  

4.4 Comparisons With Related Algorithms 

In order to evaluate the performances of the proposed algorithm, it is also compared with 
typical algorithms in [8] and [12] under the same experiment settings. Algorithm in [8] is an 
optimal algorithm with maximum system throughput, while algorithm in [12] is a resource 
allocation with proportional rate. Both of them are excellent and typical algorithms. The total 
throughput and fairness are used to measure the performances. 

Fig. 6 and Fig. 7 show the throughput and fairness of the proposed algorithm compared 
with that in [8] and [12]. Fig. 6 shows the system throughput as a function of different 
proportional fairness index (see table1). The parameter settings are as follows: 1totalP w ， 
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0.01thI w , other parameter settings are shown in section 4.1. It can be seen that the system 
throughput is maximized in [8] and it remains the same because it doesn’t consider the 
proportional fairness. The total throughput of the proposed algorithm changes with 
proportional fairness. As the proportional fairness requirements for SUs become less uniform, 
the total throughput decreases. This is because that the diversity of multi-user reduces 
effectively and the proposed algorithm removes some allocated bits to satisfy the proportional 
rate constraint resulting in some loss for system throughput. It can also be seen that the 
proposed algorithm can obtain very close to the optimal throughput as the optimal algorithm in 
[8] and can achieve consistent greater throughput than sub-optimal algorithm in [12], which 
show that the proposed algorithm gains better trade-off between throughput and fairness. 
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Fig. 6 total throughput with different index proportional fairness 

Fig. 7 directly displays the distribution of the total throughput among SUs with proportional 
fairness rate 1 2 3 4: : : 1:1:1:16a    . The first column denotes algorithm in [8], the second 
column denotes the ideal distributions. That is, the total throughput is allocated according to 

the proportional rate with the value

1

' m
m M

i
i

F








. The fairness of secondary user m  actually 

gotten is expressed as

1

'' m
m M

i
i

R
F

R





.The third column denotes the proposed algorithm in this 

paper, the fourth column denotes algorithm in [12]. It can be seen that the total throughput is 
allocated proportionally among SUs in our algorithm, which is very close to ideal fairness 
ratio and better than algorithm in [12]. Subcarriers are allocated to the SUs with best gain on it 
and don’t consider the fairness in [8]. Hence, when secondary user 4 has better channel 
conditions, it obtains almost all the resource and other SUs can hardly obtain throughput. 
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Fig. 7 throughput distributions among different secondary user 

5. Conclusions 

Resource allocation is a key issue in cognitive wireless network. In this paper, joint subcarrier 
and power allocation with proportional fairness rate in OFDM-based CWN is studied. It is 
hard to obtain the optimal solution directly because the resource allocation is a nonlinear 
optimization problem. Hence an immune clonal based sub-optimal algorithm is proposed. The 
total power and interference threshold constraints are jointly considered, which is different 
from the conventional (non-cognitive) scheme. Theoretical analysis and computer simulations 
show that the proposed algorithm can achieve near-optimal performance with lower 
computational complexity and outperform some other approaches with proportional rate 
constraint. It obtains better trade-off between total throughput and proportional fairness. Its 
application into different practical systems, such as cognitive ad hoc system, is also quite 
worth studying, which may be the future research of this work. 
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