• Title/Summary/Keyword: Adaptive MAP Estimation

Search Result 35, Processing Time 0.018 seconds

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

Maximum A Posteriori Estimation-based Adaptive Search Range Decision for Accelerating HEVC Motion Estimation on GPU

  • Oh, Seoung-Jun;Lee, Dongkyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4587-4605
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) suffers from high computational complexity due to its quad-tree structure in motion estimation (ME). This paper exposes an adaptive search range decision algorithm for accelerating HEVC integer-pel ME on GPU which estimates the optimal search range (SR) using a MAP (Maximum A Posteriori) estimator. There are three main contributions; First, we define the motion feature as the standard deviation of motion vector difference values in a CTU. Second, a MAP estimator is proposed, which theoretically estimates the motion feature of the current CTU using the motion feature of a temporally adjacent CTU and its SR without any data dependency. Thus, the SR for the current CTU is parallelly determined. Finally, the values of the prior distribution and the likelihood for each discretized motion feature are computed in advance and stored at a look-up table to further save the computational complexity. Experimental results show in conventional HEVC test sequences that the proposed algorithm can achieves high average time reductions without any subjective quality loss as well as with little BD-bitrate increase.

Boundary-adaptive Despeckling : Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.295-309
    • /
    • 2009
  • In this study, an iterative maximum a posteriori (MAP) approach using a Bayesian model of Markovrandom field (MRF) was proposed for despeckling images that contains speckle. Image process is assumed to combine the random fields associated with the observed intensity process and the image texture process respectively. The objective measure for determining the optimal restoration of this "double compound stochastic" image process is based on Bayes' theorem, and the MAP estimation employs the Point-Jacobian iteration to obtain the optimal solution. In the proposed algorithm, MRF is used to quantify the spatial interaction probabilistically, that is, to provide a type of prior information on the image texture and the neighbor window of any size is defined for contextual information on a local region. However, the window of a certain size would result in using wrong information for the estimation from adjacent regions with different characteristics at the pixels close to or on boundary. To overcome this problem, the new method is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The proximity to boundary is estimated using a non-uniformity measurement based on standard deviation of local region. The new scheme has been extensively evaluated using simulation data, and the experimental results show a considerable improvement in despeckling the images that contain speckle.

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

Adaptive MAP High-Resolution Image Reconstruction Algorithm Using Local Statistics (국부 통계 특성을 이용한 적응 MAP 방식의 고해상도 영상 복원 방식)

  • Kim, Kyung-Ho;Song, Won-Seon;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1194-1200
    • /
    • 2006
  • In this paper, we propose an adaptive MAP (Maximum A Posteriori) high-resolution image reconstruction algorithm using local statistics. In order to preserve the edge information of an original high-resolution image, a visibility function defined by local statistics of the low-resolution image is incorporated into MAP estimation process, so that the local smoothness is adaptively controlled. The weighted non-quadratic convex functional is defined to obtain the optimal solution that is as close as possible to the original high-resolution image. An iterative algorithm is utilized for obtaining the solution, and the smoothing parameter is updated at each iteration step from the partially reconstructed high-resolution image is required. Experimental results demonstrate the capability of the proposed algorithm.

Clutter Rejection Method using Background Adaptive Threshold Map (배경 적응적 문턱치 맵(Threshold Map)을 이용한 클러터 제거 기법)

  • Kim, Jieun;Yang, Yu Kyung;Lee, Boo Hwan;Kim, Yeon Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • In this paper, we propose a robust clutter pre-thresholding method using background adaptive Threshold Map for the clutter rejection in the complex coastal environment. The proposed algorithm is composed of the use of Threshold Map's and method of its calculation. Additionally we also suggest an automatic decision method of Thresold Map's update. Experimental results on some sets of real infrared image sequence show that the proposed method could remove clutters effectively without any loss of detection rate for the aim target and reduce processing time dramatically.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF

Adaptive Delaunay Mesh Generation Technique Based on a Posteriori Error Estimation and a Node Density Map (오차 예측과 격자밀도 지도를 이용한 적응 Delaunay 격자생성방법)

  • 홍진태;이석렬;박철현;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.334-341
    • /
    • 2004
  • In this study, a remeshing algorithm adapted to the mesh density map using the Delaunay mesh generation method is developed. In the finite element simulation of forging process, the numerical error increases as the process goes on because of discrete property of the finite elements and distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical error will be highly increased. However, it is not desirable to use a uniformly fine mesh in the whole domain. Therefore, it is necessary to reduce the analysis error by constructing locally refined mesh at the region where the error is concentrated such as at the die corner. In this paper, the point insertion algorithm is used and the mesh size is controlled by using a mesh density map constructed with a posteriori error estimation. An optimized smoothing technique is adopted to have smooth distribution of the mesh and improve the mesh element quality.

A Statistically Model-Based Adaptive Technique to Unsupervised Segmentation of MR Images (자기공명영상의 비지도 분할을 위한 통계적 모델기반 적응적 방법)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.286-295
    • /
    • 2000
  • We present a novel statistically adaptive method using the Minimum Description Length(MDL) principle for unsupervised segmentation of magnetic resonance(MR) images. In the method, Markov random filed(MRF) modeling of tissue region accounts for random noise. Intensity measurements on the local region defined by a window are modeled by a finite Gaussian mixture, which accounts for image inhomogeneities. The segmentation algorithm is based on an iterative conditional modes(ICM) algorithm, approximately finds maximum ${\alpha}$ posteriori(MAP) estimation, and estimates model parameters on the local region. The size of the window for parameter estimation and segmentation is estimated from the image using the MDL principle. In the experiments, the technique well reflected image characteristic of the local region and showed better results than conventional methods in segmentation of MR images with inhomogeneities, especially.

  • PDF