This paper develops an adaptive scheduling policy for flexible manufacturing systems. The inductive learning methodology used for constructing this state-dependent scheduling policy provides and understanding of the relative importance of the various system parameters in determining the appropriate scheduling rule. Experimental studies indicated the superiority of the suggested approach over the alternative approach involving the repeated application of a single scheduling rule for randomly generated test problems as well as a real system, and under both stationary and nonstationary conditions. In particular, its relative performance improves further when there are frequent disruptions, and when disruptions are caused by the introduction of tiiight due date jobs, one of the most common surces of disruptions in most manufacturing systems.
This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.
Journal of Korean Institute of Industrial Engineers
/
v.23
no.2
/
pp.249-260
/
1997
The manufacturing environment is rife with nonlinear processes. In this context, an intelligent production controller should be able to predict the dynamic behavior of various subsystems as they react to transient environmental conditions, the varying internal condition of the manufacturing plant, and the changing demands of the production schedule. This level of adaptive capability may be achieved through a coherent methodology for a learning coordinator to predict nonlinear and stochastic processes. The system is to serve as a real time, online supervisor for routine activities as well as exceptional conditions such as damage, failure, or other anomalies. The complexity inherent in a learning coordinator can be managed by a modular architecture incorporating case based reasoning. In the interest of concreteness, the concepts are presented through a case study involving a knowledge based robotic system.
This research introduces an innovative approach to revolutionize inventory management strategies amid unpredictable demand and uncertainties. Introducing a Fuzzy Economic Order Quantity (EOQ) model, enriched with the centroid defuzzification method and supervised machine learning, the study offers a comprehensive solution for optimized decision-making. The model transcends traditional inventory paradigms by seamlessly integrating fuzzy logic and advanced machine learning, emphasizing adaptability in fast-paced business landscapes. The research unfolds against the backdrop of agile inventory management advocacy, with key contributions including the centroid defuzzification method for crisp interpretation and the integration of linear regression for cost prediction. The study employs a real-life bakery scenario to demonstrate the efficacy of both crisp and fuzzy models, underscoring the latter's superiority in handling uncertainties. Comparative analysis reveals nuanced impacts of uncertainty on inventory decisions, while linear regression establishes statistical relationships for cost predictions. The findings underscore the pivotal role of fuzzy logic in optimizing inventory management, paving the way for future enhancements, advanced machine learning integration, and real-world validation. This research not only contributes to adaptive inventory management evolution but also sets the stage for further exploration and refinement in dynamic business landscapes.
Journal of the Korean Operations Research and Management Science Society
/
v.13
no.1
/
pp.57-57
/
1988
This paper develops an adaptive scheduling policy for flexible manufacturing systems. The inductive learning methodology used for constructing this state-dependent scheduling policy provides and understanding of the relative importance of the various system parameters in determining the appropriate scheduling rule. Experimental studies indicated the superiority of the suggested approach over the alternative approach involving the repeated application of a single scheduling rule for randomly generated test problems as well as a real system, and under both stationary and nonstationary conditions. In particular, its relative performance improves further when there are frequent disruptions, and when disruptions are caused by the introduction of tiiight due date jobs, one of the most common surces of disruptions in most manufacturing systems.
Proceedings of the Korean Operations and Management Science Society Conference
/
2007.11a
/
pp.183-189
/
2007
In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.
Journal of the Korean Operations Research and Management Science Society
/
v.27
no.2
/
pp.33-49
/
2002
CBM (Condition-Based Maintenance) has increasingly drawn attention in industry because of its many benefits. CBM Problem Is characterized as a state-dependent scheduling model that demands simultaneous maintenance actions, each for an attribute that influences on machine condition. This problem is very hard to solve within conventional Markov decision process framework. In this paper, we present an intelligent machine maintenance scheduler, for which a new incremental decision tree learning method as evolutionary system identification model and shortest path problem as schedule generation model are developed. Although our approach does not guarantee an optimal scheduling policy in mathematical viewpoint, we verified through simulation based experiment that the intelligent scheduler is capable of providing good scheduling policy that can be used in practice.
Park, Young Cheol;Yoo, Jae Won;Jeong, Su-young;Oh, Tae-Geon;Kim, Jong Ryol;Choe, Mi Kyung;Choi, Ok-in
Journal of Wetlands Research
/
v.21
no.4
/
pp.267-280
/
2019
Adaptive Management (AM) is one of the best available approaches for managing natural resources in the presence of uncertainty. In spite of the limitations, AM has been widely applied in nature resource management policies and plans internationally, while application of AM in nature resource management in Korea is limitedly used. Accordingly, this study reviews application of AM in nature resource management research in Korea with respect to its definitions, procedures, impediments and considerations. The present study also reviews recent ecological modelling studies which is an essential component of AM approach. Finally, management of artificial sea forest, coastal wetlands and fisheries are suggested as the recommended fields to adopt AM.
In order to truly integrate e-Learning system into regular curriculum at a university, mobile access to Learning Management Systems has to be enabled. Mobile devices have the potential to be integrated into the classroom, because they contain unique characteristics such as portability, social interactivity, context sensitivity, connectivity and individuality. Adoption of Learning Management Systems by students is still on the low rate, mostly because of poor usability of existing e-Learning systems. Our initial research has confirmed this hypothesis. Usability issue is rising to the higher level on the mobile platform, because of the mobile devices' limited screen size, input interfaces and bandwidth, and also because of the context of use. Our second hypothesis was that it is wrong to consider a mobile device as a surrogate for desktop or laptop personal computer (PC). By just adopting the existing Learning Management System on mobile devices with adaptive technologies such as Google proxy, we do not acquire the satisfactory results. Usability can prove to be even lower compared to desktop application. One possible solution to the problem could be development of rich client applications for today's mobile devices that would raise the usability to a higher level. We developed a PocketPC prototype application by using user-centered design principles, which we presented as a third alternative in usability research conducted among university students. Results gathered in such a way have confirmed that development of e-Learning system, in order to be widely accepted by students, needs to have the user(student) in the center of development process.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.131-134
/
1996
Application of machine learning to scheduling problems has focused on improving system performance based on opportunistic selection among multitudes of simple rules. This study proposes a new method of learning scheduling rules, which first establishes qualitatively meaningful criteria and quantitatively optimizes the use of them, a similar way as human scheduler accumulate their expertise. The weighting of these criteria is trained in response to the system states through simulation. To mimic human quantitative feelings, distributed fuzzy sets are used for assessing the system state. The proposed method was applied to job dispatching in a simulated FMS environment. The job-dispatching criteria used were the length of the processing time of a job and the situation of the next workstation. The results show that the proposed method can develop efficient and robust scheduling strategies, which can also provide understandable and usable know-hows to the human scheduler.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.