• Title/Summary/Keyword: Adaptive Learning Management

Search Result 87, Processing Time 0.044 seconds

Adaptive scheduling in flexible manufacturing systems

  • Park, Sang-Chan;Raman, Narayan;Michael J. Shaw
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.57-70
    • /
    • 1996
  • This paper develops an adaptive scheduling policy for flexible manufacturing systems. The inductive learning methodology used for constructing this state-dependent scheduling policy provides and understanding of the relative importance of the various system parameters in determining the appropriate scheduling rule. Experimental studies indicated the superiority of the suggested approach over the alternative approach involving the repeated application of a single scheduling rule for randomly generated test problems as well as a real system, and under both stationary and nonstationary conditions. In particular, its relative performance improves further when there are frequent disruptions, and when disruptions are caused by the introduction of tiiight due date jobs, one of the most common surces of disruptions in most manufacturing systems.

  • PDF

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

Predicting Nonlinear Processes for Manufacturing Automation: Case Study through a Robotic Application

  • Kim, Steven H.;Oh, Heung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.249-260
    • /
    • 1997
  • The manufacturing environment is rife with nonlinear processes. In this context, an intelligent production controller should be able to predict the dynamic behavior of various subsystems as they react to transient environmental conditions, the varying internal condition of the manufacturing plant, and the changing demands of the production schedule. This level of adaptive capability may be achieved through a coherent methodology for a learning coordinator to predict nonlinear and stochastic processes. The system is to serve as a real time, online supervisor for routine activities as well as exceptional conditions such as damage, failure, or other anomalies. The complexity inherent in a learning coordinator can be managed by a modular architecture incorporating case based reasoning. In the interest of concreteness, the concepts are presented through a case study involving a knowledge based robotic system.

  • PDF

DEVELOPMENT AND EVALUATION OF A CENTROID-BASED EOQ MODEL FOR ITEMS SUBJECT TO DEGRADATION AND SHORTAGES

  • K. KALAIARASI;S. SWATHI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1063-1076
    • /
    • 2024
  • This research introduces an innovative approach to revolutionize inventory management strategies amid unpredictable demand and uncertainties. Introducing a Fuzzy Economic Order Quantity (EOQ) model, enriched with the centroid defuzzification method and supervised machine learning, the study offers a comprehensive solution for optimized decision-making. The model transcends traditional inventory paradigms by seamlessly integrating fuzzy logic and advanced machine learning, emphasizing adaptability in fast-paced business landscapes. The research unfolds against the backdrop of agile inventory management advocacy, with key contributions including the centroid defuzzification method for crisp interpretation and the integration of linear regression for cost prediction. The study employs a real-life bakery scenario to demonstrate the efficacy of both crisp and fuzzy models, underscoring the latter's superiority in handling uncertainties. Comparative analysis reveals nuanced impacts of uncertainty on inventory decisions, while linear regression establishes statistical relationships for cost predictions. The findings underscore the pivotal role of fuzzy logic in optimizing inventory management, paving the way for future enhancements, advanced machine learning integration, and real-world validation. This research not only contributes to adaptive inventory management evolution but also sets the stage for further exploration and refinement in dynamic business landscapes.

Adaptive Scheduling in Flexible Manufacturing Systems

  • 박상찬;Narayan Raman;Michael J. Shaw
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.1
    • /
    • pp.57-57
    • /
    • 1988
  • This paper develops an adaptive scheduling policy for flexible manufacturing systems. The inductive learning methodology used for constructing this state-dependent scheduling policy provides and understanding of the relative importance of the various system parameters in determining the appropriate scheduling rule. Experimental studies indicated the superiority of the suggested approach over the alternative approach involving the repeated application of a single scheduling rule for randomly generated test problems as well as a real system, and under both stationary and nonstationary conditions. In particular, its relative performance improves further when there are frequent disruptions, and when disruptions are caused by the introduction of tiiight due date jobs, one of the most common surces of disruptions in most manufacturing systems.

Fuzzy GMDH-type Model and Its Application to Financial Demand Forecasting for the Educational Expenses

  • Hwang, Heung-Suk;Seo, Mi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.183-189
    • /
    • 2007
  • In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.

  • PDF

Machine Diagnosis and Maintenance Policy Generation Using Adaptive Decision Tree and Shortest Path Problem (적응형 의사결정 트리와 최단 경로법을 이용한 기계 진단 및 보전 정책 수립)

  • 백준걸
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.33-49
    • /
    • 2002
  • CBM (Condition-Based Maintenance) has increasingly drawn attention in industry because of its many benefits. CBM Problem Is characterized as a state-dependent scheduling model that demands simultaneous maintenance actions, each for an attribute that influences on machine condition. This problem is very hard to solve within conventional Markov decision process framework. In this paper, we present an intelligent machine maintenance scheduler, for which a new incremental decision tree learning method as evolutionary system identification model and shortest path problem as schedule generation model are developed. Although our approach does not guarantee an optimal scheduling policy in mathematical viewpoint, we verified through simulation based experiment that the intelligent scheduler is capable of providing good scheduling policy that can be used in practice.

Adaptive Management: a key tool for natural resource management (자연자원관리를 위한 핵심도구: 적응관리)

  • Park, Young Cheol;Yoo, Jae Won;Jeong, Su-young;Oh, Tae-Geon;Kim, Jong Ryol;Choe, Mi Kyung;Choi, Ok-in
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.267-280
    • /
    • 2019
  • Adaptive Management (AM) is one of the best available approaches for managing natural resources in the presence of uncertainty. In spite of the limitations, AM has been widely applied in nature resource management policies and plans internationally, while application of AM in nature resource management in Korea is limitedly used. Accordingly, this study reviews application of AM in nature resource management research in Korea with respect to its definitions, procedures, impediments and considerations. The present study also reviews recent ecological modelling studies which is an essential component of AM approach. Finally, management of artificial sea forest, coastal wetlands and fisheries are suggested as the recommended fields to adopt AM.

User-centered Design of m-Learning System: Moodle On The Go

  • Minovic, Miroslav;Stavljanin, Velimir;Milovanovic, Milos;Starcevic, Dusan
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.80-95
    • /
    • 2010
  • In order to truly integrate e-Learning system into regular curriculum at a university, mobile access to Learning Management Systems has to be enabled. Mobile devices have the potential to be integrated into the classroom, because they contain unique characteristics such as portability, social interactivity, context sensitivity, connectivity and individuality. Adoption of Learning Management Systems by students is still on the low rate, mostly because of poor usability of existing e-Learning systems. Our initial research has confirmed this hypothesis. Usability issue is rising to the higher level on the mobile platform, because of the mobile devices' limited screen size, input interfaces and bandwidth, and also because of the context of use. Our second hypothesis was that it is wrong to consider a mobile device as a surrogate for desktop or laptop personal computer (PC). By just adopting the existing Learning Management System on mobile devices with adaptive technologies such as Google proxy, we do not acquire the satisfactory results. Usability can prove to be even lower compared to desktop application. One possible solution to the problem could be development of rich client applications for today's mobile devices that would raise the usability to a higher level. We developed a PocketPC prototype application by using user-centered design principles, which we presented as a third alternative in usability research conducted among university students. Results gathered in such a way have confirmed that development of e-Learning system, in order to be widely accepted by students, needs to have the user(student) in the center of development process.

A fuzzy criteria weighting for adaptive FMS scheduling

  • Lee, Kikwang;Yoon, Wan-Chul;Baek, Dong-Hyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.131-134
    • /
    • 1996
  • Application of machine learning to scheduling problems has focused on improving system performance based on opportunistic selection among multitudes of simple rules. This study proposes a new method of learning scheduling rules, which first establishes qualitatively meaningful criteria and quantitatively optimizes the use of them, a similar way as human scheduler accumulate their expertise. The weighting of these criteria is trained in response to the system states through simulation. To mimic human quantitative feelings, distributed fuzzy sets are used for assessing the system state. The proposed method was applied to job dispatching in a simulated FMS environment. The job-dispatching criteria used were the length of the processing time of a job and the situation of the next workstation. The results show that the proposed method can develop efficient and robust scheduling strategies, which can also provide understandable and usable know-hows to the human scheduler.

  • PDF