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Abstract. This research introduces an innovative approach to revolution-

ize inventory management strategies amid unpredictable demand and un-

certainties. Introducing a Fuzzy Economic Order Quantity (EOQ) model,
enriched with the centroid defuzzification method and supervised machine

learning, the study offers a comprehensive solution for optimized decision-

making. The model transcends traditional inventory paradigms by seam-
lessly integrating fuzzy logic and advanced machine learning, emphasiz-

ing adaptability in fast-paced business landscapes. The research unfolds

against the backdrop of agile inventory management advocacy, with key
contributions including the centroid defuzzification method for crisp in-

terpretation and the integration of linear regression for cost prediction.

The study employs a real-life bakery scenario to demonstrate the efficacy
of both crisp and fuzzy models, underscoring the latter’s superiority in

handling uncertainties. Comparative analysis reveals nuanced impacts of
uncertainty on inventory decisions, while linear regression establishes statis-

tical relationships for cost predictions. The findings underscore the pivotal

role of fuzzy logic in optimizing inventory management, paving the way
for future enhancements, advanced machine learning integration, and real-
world validation. This research not only contributes to adaptive inventory

management evolution but also sets the stage for further exploration and
refinement in dynamic business landscapes.
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1. Introduction

In the operational paradigm of businesses, inventory management holds para-
mount importance. However, traditional models that once efficiently handled
inventory often fall short when faced with unpredictable shifts in demand or
potential deterioration of stocked items. Recent literature has shed light on this
inadequacy, prompting the exploration of contemporary methodologies aimed at
addressing these uncertainties.

Wang and Chen’s (2020) comprehensive overview highlight the necessity of
evolving inventory management strategies to accommodate uncertainty. Their
analysis emphasizes the critical need for adaptable models capable of swiftly re-
sponding to unforeseen demands. Conventional models often stumble in rapidly
changing scenarios, urging a transition toward more agile approaches.

Chen and Wu (2020) proposed a hybrid inventory management model that in-
tegrates machine learning algorithms to enhance responsiveness. Their acknowl-
edgment of the limitations of traditional models in rapidly changing demand
scenarios underscores the need for adaptability. Their approach bridges this gap
by focusing on the integration of technology to bolster adaptability and agility.

Smith and Johnson (2020) introduced a fuzzy logic approach to inventory
management that recognizes the inherent flexibility needed in uncertain situa-
tions. This methodology allows for more nuanced decision making, embracing
the ambiguity often present in unpredictable demand scenarios. The emphasis
on flexibility becomes a guiding principle in effectively navigating uncertainties.

Lee and Park’s (2020) robust inventory control strategy, employing the cen-
troid method, emphasizes stability and resilience in inventory systems. Tailored
specifically for unexpected demand scenarios, this approach focuses on fortify-
ing inventory systems against abrupt changes. Stability emerges as a crucial
attribute in unpredictable environments, offering a lens through which uncer-
tainties can be effectively managed.

Advancements proposed by Liu and Zhao (2021) delve into inventory control
strategies that leverage deep learning. Their emphasis on the dynamic adapta-
tion of inventory systems harnesses the power of advanced algorithms to respond
effectively to unforeseen demands. This adaptive approach aligns inventory man-
agement with the pace of rapidly changing market landscapes.

Simultaneously, Li and Wang’s (2021) exploration addresses the challenge of
managing deteriorating items. They proposed backordering inventory control
strategies using machine learning to optimize inventory management for items
vulnerable to deterioration. This aspect, which is often overlooked in tradi-
tional models, highlights the importance of catering to all facets of inventory
complexities.

Collectively, these studies underscore the evolving landscape of inventory
management. They advocate adaptive, technology-integrated strategies that em-
brace uncertainty and leverage advanced methodologies to effectively navigate
unpredictable demand scenarios. In an era characterized by rapid changes and
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uncertainties, these approaches serve as guiding beacons for businesses striving
to fortify their inventory management practices.

Finally, the contemporary approaches elucidated in the recent literature il-
luminate a path forward in inventory management. They underscore the im-
portance of agility, adaptability, and technological integration, emphasizing the
need to embrace uncertainty as an inherent aspect of modern business environ-
ments. These methodologies provide a foundation for businesses to navigate the
complexities of inventory management in an ever-evolving marketplace.

2. Definitions

These definitions are needed while examining the fuzzy inventory model.

2.1. EOQ Inventory. All the commodities, merchandise, and supplies that a
company keeps on hand in anticipation of selling them for a profit are referred
to as inventory. The Economic Order Quantity, or EOQ, is the suggested order
volume that a business should place in order to reduce inventory expenses, in-
cluding holding costs, shortfall costs, and order charges. The EOQ formula is
given by:

Q =

√
2DS

H

2.2. Fuzzy sets. A fuzzy set Ã on the given universal set X is denoted and
defined by:

Ã = {(x, λÃ(x)) : x ∈ X}
Where, λÃ : X → [0, 1] is called the membership function and λÃ(x) denotes

the degree of x in Ã.

2.3. Triangular fuzzy number (TFN). A fuzzy number F̃ = (f1, f2, f3)
with f1 < f2 < f3 is triangular if its membership function is defined as:

µF̃ (x) =


x−f1
f2−f1

when f1 ≤ x ≤ f2
f3−x
f3−f2

when f2 ≤ x ≤ f3

0 otherwise

2.4. Centroid method. If F̃ = (f, g, h) is a triangular fuzzy number (TFN),

then the centroid method on F̃ is defined as:

C(F̃ ) =
1

3
(f + g + h)

2.5. Linear Regression (LR). Finding linear relationships between variables
becomes easier with the help of the supervised learning method linear regression
(LR) in machine learning. Regression cases’ outputs might be real or continuous
values.
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2.6. Notations.

• M : Holding cost
• J : Ordering cost
• s1: Inventory cost
• s2: Deficiency cost
• s3: Loss of revenue
• M̃ : Holding/fuzzy

• J̃ : Ordering/fuzzy

3. Mathematical Model

3.1. Notations. Inventory management involves a complex interplay of nu-
merous variables, each representing crucial facets of the inventory control pro-
cess. Notations within this domain provide a shorthand for articulating these
variables, costs, and concepts. In this section, we introduce the key notations
and symbols fundamental to understanding subsequent discussions on inventory
management under uncertainty.

• M - Holding Cost: This represents the cost incurred in holding or carry-
ing a unit of inventory over a specified period. It encompasses expenses
such as warehousing, insurance, and opportunity costs associated with
tying up capital.

• J - Ordering Cost: J denotes the cost involved in placing an order,
including administrative expenses, transportation, and any setup costs
incurred for ordering new inventory.

• s1 - Inventory Cost: This represents the overall cost of inventory, combin-
ing the holding and ordering costs with any additional expenses incurred
in managing inventory.

• s2 - Deficiency Cost: s2 signifies the costs related to stickouts or short-
ages. It accounts for expenses incurred because of unmet demand, such
as backordering costs, lost sales, or customer dissatisfaction.

• s3 - Loss of Revenue: This term encapsulates the potential revenue loss
attributed to stickouts or shortages, reflecting the impact of unfulfilled
orders on overall revenue generation.

• Holding/Fuzzy: The symbol M indicates a fuzzy or uncertain nature at-
tributed to the holding cost. It represents scenarios in which the holding
cost might exhibit variability or uncertainty because of various factors,
thereby adopting a fuzzy logic approach in modeling.

• Ordering/Fuzzy: Similar to M , J represents the fuzziness or uncertainty
surrounding the ordering cost, acknowledging scenarios where this cost
might fluctuate or exhibit indeterminacy.

These notations serve as foundational elements for articulating and analyzing
the intricacies of inventory management models, particularly in contexts where
uncertainties prevail, leading to fuzzy or uncertain parameters within the inven-
tory control framework.
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3.2. Formulation of Inventory Management Model under Exponential
Demand. The mathematical model presented addresses inventory management
under exponential demand, incorporating replenishment cycles and backlogging.
The primary differential equation governing the system is given by:

dR(u)

du
+ (γ + δu2)R(u) = −cedu, 0 ≤ u ≤ u1

With the initial condition R(0)=RA and R(u1)=0, the solution R(u)during
the replenishment phase becomes:

R(u) = c

[
(u1 − u) +

(γ + δ)

2
(u2

1 − u2) +
(dγ)

3
(u3

1 − u3)

+
δ

12
(u4

1 − u4) +
δd

12
(u5

1 − u5)

]
e−γu−(δu3)/3

R(0) = RA = γ

[
u1 +

(d+ γ)

2
u2
1 +

(dγ)

3
u3
1 +

δ

12
u4
1 +

δd

15
u5
1

]
During the deficiency period [u1,U] the backlogged sales are modeled by the

differential equation is

dR(u)

du
=

D

1 + θ(U − u)
, u1 < u < U

The solution for R(u) during this period

R(u) =
D

θ
(log(1 + θ(U − u))− log(1 + θ(U − u1)))

RB =
D

θ
log(1 + θ(U − u1))

The Economic Order Quantity (EOQ) for each cycle is then determined as
the sum of replenishment and backlogging costs:

O = RA+RB = γ

[
u1 +

(d+ γ)

2
u2
1 +

(dγ)

3
u3
1 +

δ

12
u4
1 +

δd

15
u5
1

]
+
D

θ
log(1+θ(U−u1))

The overall total cost per unit per cycle is given by the expression:

OTC =
1

U

[
J +M

(γu2
1

2
+ c(d+ γ)

u3
1

3
− cdγ

8
u4
1

+
γδ

60
u5
1 +

γδd

72
u6
1

)
+ s1

(
cu1 + c(d+ γ)

u2
1

2
+

cdγ

3
u3
1 +

γδ

12
u4
1

+
γδd

15
u5
1 −

cedu1

d

)
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+
s2d

θ

(
U − u1 −

1

θ
log(1 + θ(U − u1)))

)
+ s3D

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)]
This equation represents the overall total cost per unit per cycle, considering
various cost components related to replenishment, holding, backlogging, and
demand. The optimization problem aims to minimize this overall cost by finding
the optimal values for the decision variables u1 and U.

3.3. Optimization of Fuzzy Inventory Management Model under Ex-
ponential Demand. In the fuzzy sense analysis of the model, various param-
eters such as cost components J̃ = (J̃1, J̃2, J̃3), M̃ = (M̃1, M̃2, M̃3), coefficients

c̃ = (c̃1, c̃2, c̃3), d̃ = (d̃1, d̃2, d̃3), γ̃ = (γ̃1, γ̃2, γ̃3), δ̃ = (δ̃1, δ̃2, δ̃3), and decision
variables (u1, U) are considered as triangular fuzzy numbers. The total overall

cost in the fuzzy environment ˜OTC is expressed as a function of these fuzzy
parameters.

˜OTC =
1

U

[
J̃ + M̃

(
γ̃u2

1

2
+

c̃(d̃+ γ̃)

3
u3
1 −

c̃d̃γ̃

8
u4
1

+
γ̃δ̃

60
u5
1 +

γ̃δ̃d̃

72
u6
1

)
+ s1

(
c̃u1 +

c̃(d̃+ γ̃)

2
u2
1

+
c̃d̃γ̃

3
u3
1 +

γ̃δ̃

12
u4
1 +

γ̃δ̃d̃

15
u5
1 −

c̃ed̃u1

d

)

+
s2D

θ

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)

+ s3D

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)]
The Fuzzy total cost ˜OTC is further defuzzified using the centroid method,
resulting in a crisp overall total cost OTC. The defuzzification involves consid-
ering different scenarios (S1, S2, S3) with corresponding fuzzy parameters and
aggregating them using a weighted average.

OTC =
1

3

(
OTCS1

+OTCS2
+OTCS3

)

˜OTC =
1

U

([
J̃1 + M̃1

(
γ̃1u

2
1

2
+

c̃1(d̃1 + γ̃1)

3
u3
1 −

c̃d̃1γ̃1
8

u4
1

+
γ̃1δ̃1
60

u5
1 +

γ̃1δ̃1d̃1
72

u6
1

)
+ s1

(
c̃1u1 +

c̃1(d̃1 + γ̃1)

2
u2
1
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+
c̃1d̃1γ̃1

3
u3
1 +

γ̃1δ̃1
12

u4
1 +

γ̃1δ̃1d̃1
15

u5
1 −

c̃1e
d̃1u1

d1

)

+
s2D

θ

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)

+ s3D

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)]

+

[
J̃2 + M̃2

(
γ̃2u

2
1

2
+

c̃2(d̃2 + γ̃2)

3
u3
1 −

c̃2d̃2γ̃2
8

u4
1

+
γ̃2δ̃2
60

u5
1 +

γ̃2δ̃2d̃2
72

u6
1

)
+ s1

(
c̃2u1 +

c̃2(d̃2 + γ̃2)

2
u2
1

+
c̃2d̃2γ̃2

3
u3
1 +

γ̃2δ̃2
12

u4
1 +

γ̃2δ̃2d̃2
15

u5
1 −

c̃2e
d̃2u1

d1

)

+
s2D

θ

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)

+ s3D

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)]

+

[
J̃3 + M̃3

(
γ̃3u

2
1

2
+

c̃3(d̃3 + γ̃3)

3
u3
1 −

c̃3d̃3γ̃3
8

u4
1

+
γ̃3δ̃3
60

u5
1 +

γ̃3δ̃3d̃3
72

u6
1

)
+ s1

(
c̃3u1 +

c̃3(d̃3 + γ̃3)

2
u2
1

+
c̃3d̃3γ̃3

3
u3
1 +

γ̃3δ̃3
12

u4
1 +

γ̃3δ̃3d̃3
15

u5
1 −

c̃3e
d̃3u1

d3

)

+
s2D

θ

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)

+ s3D

(
U − u1 −

1

θ
log(1 + θ(U − u1))

)])

To optimize the system and minimize the overall cost, the partial derivative of
OTC with respect to u1 is set to zero, leading to an equation involving fuzzy
parameters. The optimum values of u1 and U can be obtained by solving this
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equation. This optimization process ensures that the system operates with min-
imum overall cost in the fuzzy environment

1

3
U

[
(M̃1)

(
(c̃1)u1 + (c̃1)(d̃1)u

2
1 +

(c̃1)(γ̃1)

2
)u2

1

− (c̃1)(d̃1)(γ̃1)

2
u3
1 +

(c̃1) ˜(δ1)

12
u4
1 +

(c̃1)(d̃1)(δ̃1)

12
u5
1

+ s1

(
c̃1 + (c̃1)(d̃1) + (c̃1)u1 + (c̃1)(d̃1)(c̃1)u

2
1

+
(c̃1)(δ̃1)

3
(u3

1 + (d̃1)u
4
1) + c̃1e

(d̃1u1)
)

− (s2 + θs3)

1 + θ(U − u1)

]

+

[
(M̃2)

(
(c̃2)u1 + (c̃2)(d̃2)u

2
1 +

(c̃2)(γ̃2)

2
)u2

1

− (c̃2)(d̃2)(γ̃2)

2
u3
1 +

(c̃2) ˜(δ2)

12
u4
1 +

(c̃2)(d̃2)(δ̃2)

12
u5
1

+ s1

(
c̃2 + (c̃2)(d̃2) + (c̃2)u1 + (c̃2)(d̃2)(c̃2)u

2
1

+
(c̃2)(δ̃2)

3
(u3

1 + (d̃2)u
4
1) + c̃2e

(d̃2u1)
)

− (s2 + θs3)

1 + θ(U − u1)

]

+

[
(M̃3)

(
(c̃3)u1 + (c̃3)(d̃3)u

2
1 +

(c̃3)(γ̃3)

2
)u2

1

− (c̃3)(d̃3)(γ̃3)

2
u3
1 +

(c̃3) ˜(δ3)

12
u4
1 +

(c̃3)(d̃3)(δ̃3)

12
u5
1

+ s1

(
c̃3 + (c̃3)(d̃3) + (c̃3)u1 + (c̃3)(d̃3)(c̃3)u

2
1

+
(c̃3)(δ̃3)

3
(u3

1 + (d̃3)u
4
1) + c̃3e

(d̃3u1)
)

− (s2 + θs3)

1 + θ(U − u1)

]
= 0

This equation represents the conditions for optimizing the system and achieving
the minimum overall cost in the fuzzy environment. Solving this equation will
yield the optimum values of u1 and U, ensuring that the system operates effi-
ciently and cost-effectively, considering the inherent uncertainty associated with
fuzzy parameters.
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4. Numerical Example: Inventory Management for a Seasonal
Bakery

In a real-life scenario, such as a retail business dealing with perishable goods
or seasonal products, the contrasting approaches of crisp and fuzzy inventory
models could be applicable. Let us consider the case of managing inventory for
a bakery that specializes in producing and selling seasonal cakes.

4.1. Crisp Model Implementation: Crisp model parameters are based on
historical sales data, supplier information, and fixed costs. For instance:

• Ordering Cost (J): Fixed cost per order placed with suppliers.
• Carrying Cost (c): The cost incurred to hold one unit of the cake in
inventory.

• Demand (D): Forecasted sales of cakes during a specific period.
• Shortage costs (s1, s2, s3): Costs associated with lost sales due to stick-

outs at different severity levels.
• Holding Cost (θ): Cost of holding a cake in inventory.
• Maximum Inventory Level (M): The maximum number of cakes that
can be held in stock.

J c d s1 s2 s3 D γ δ θ M U OTC

20 16 6 1.5 2.5 2 20 2 0.2 2 2 1.09 41.2879

4.2. Fuzzy Model Implementation: Fuzzy model parameters introduce flex-
ibility to accommodate uncertainties and varying degrees of imprecision in the
bakery’s operations:

• Ordering Cost (J̃): Represented as a fuzzy set to account for potential
fluctuations in supplier prices or changing order quantities.

• Carrying Cost (c̃): Fuzzy range considering potential variations due to
storage conditions or market volatility.

• Demand (D̃): Modeled fuzzily to handle uncertain customer preferences
or unexpected changes in seasonal demands.

• Shortage Costs (s̃1, s̃2, s̃3): Fuzzy representation to account for different
levels of lost sales in uncertain situations.

• Holding Cost (θ): Reflecting potential variations in storage conditions,
wastage, or maintenance costs.

• Maximum Inventory Level (M): Providing a range to adjust inventory
capacity based on market uncertainties.

J̃ c̃ d γ δ θ s̃1 s̃2 s̃3 D̃ M ˜OTC

(10, 20, 30) (8, 16, 24) (3, 6, 9) (1, 2, 3) (0.1, 0.2, 0.3) 2 1.5 2.5 2 20 (1, 2, 3) 0.98 39.90
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In this real-life scenario of a bakery dealing with seasonal cakes, the fuzzy
model’s adaptability to uncertain demand, varying costs, and market fluctu-
ations provides a more comprehensive and adaptable approach than the rigid
assumptions of the crisp model. It enables the bakery to optimize inventory
decisions in a more agile and responsive manner, enhancing overall operational
efficiency and customer satisfaction.

4.3. Comparative Analysis: Crisp vs. Fuzzy Inventory Models. The
comparison between the crisp and fuzzy models illustrates the significant differ-
ences in inventory optimization results when uncertainties and fuzzy logic are
considered in the modeling.

Table 1. Mathematical illustration of Crisp Model

J M U OTC

20 2 1.09 41.28
40 4 1.39 48.65
60 6 1.58 59.21
80 8 1.75 72.21
100 10 2.09 85.85

Table 2. Mathematical illustration of Fuzzy Model

J̃ M̃ Ũ ˜OTC

(10,20,30) (1,2,3) 0.98 39.90
(30,40,50) (3,4,5) 1.21 45.65
(50,60,70) (5,6,7) 1.48 56.21
(70,80,90) (7,8,9) 1.65 69.21
(90,100,110) (9,10,11) 1.89 76.85

The findings from both crisp and fuzzy models highlight the nuanced effects
of uncertainty on inventory management decisions. Embracing fuzzy logic could
offer more robust strategies for handling unpredictable scenarios in inventory
control.

5. Supervised Learning analysis: Linear Regression

5.1. Linear Regression analysis. The linear regression analysis conducted
on the relationship between ’U’ and ’OTC’ unveils a clear statistical connec-
tion, vital in forecasting future events in both statistical modeling and machine
learning. The Python graph below showcases the implementation of linear re-
gression analysis, a statistical tool used in both statistical modeling and machine
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learning to establish predictive relationships between variables. In this case, ’x’
represents the ’U’ values (inventory control parameter), and ’y’ represents the
’OTC’ values (Overall Total Cost). The ’stats.linregress’ function computes the
slope, intercept, correlation coefficient (r), p-value, and standard error, forming
a linear model represented by ’mymodel’. The resulting scatter plot (Figure 3)
visually depicts the linear relationship between ’U’ and ’OTC’, offering insight
into how changes in ’U’ affect ’OTC’.

Figure 1. Python- Graphical representation of linear
relationship between U & OTC

5.2. Prediction Analysis. This section elaborates on the use of linear re-
gression to predict the total overall cost (OTC) based on the inventory control
parameter (’U’). The Python code computes the linear regression parameters
and defines a function (’myfunc’) to estimate the OTC for a given ’U’ value.
Subsequently, an example calculation for ’U = 0.98’ returns a predicted total
overall cost of approximately ’37.80’.

from scipy import stats

x = [0.98, 1.21, 1.48, 1.65, 1.89]

y = [39.90, 45.65, 56.21, 69.21, 76.85]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):

return slope * x + intercept

overalltotalcost = myfunc(0.98)

print(overalltotalcost)

Output: 37.79656744948115
Table 3 Supervised linear regression for fuzzy total cost
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Table 3. Actual vs Predicted Fuzzy Overall Total Cost

ACTUAL FUZZY OVERALL TOTAL COST PREDICTED FUZZY OVERALL TOTAL COST
39.90 37.80
45.65 47.64
56.21 59.19
69.21 66.46
76.85 76.73

Figure 2. Excel-Graphical Representation in the Variation
for Observed & Predicted Outcomes

The graphical representation in Figure 1, created in Excel, visually compares
the observed and predicted outcomes of the fuzzy total overall cost. This il-
lustrates how closely the predicted values align with the observed fuzzy total
overall cost data points, reinforcing the effectiveness of the linear regression-
based prediction. Finally, the conclusion drawn from the comparison between
the fuzzy logic and machine learning outcomes supports the notion that the pro-
posed inventory model, leveraging machine learning techniques, can effectively
simulate fuzzy logic-based outcomes in managing inventory and predicting as-
sociated costs. This section demonstrates the practical application of linear
regression, providing a clear understanding of how it aids in predicting over-
all total costs based on inventory control parameters, ’U’, and validating these
predictions against actual fuzzy data points.

6. Conclusion

This study contributes a robust fuzzy EOQ model to navigate inventory man-
agement among unpredictable scenarios characterized by unexpected demand
and deteriorating items. The model, which integrates fuzzy logic, the centroid
method, and machine learning, demonstrates its efficacy in minimizing overall
costs by adeptly addressing various cost components, including holding, order-
ing, and shortage expenses. Leveraging linear regression enhances predictive
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abilities and facilitates accurate cost estimations based on inventory parame-
ters. Comparative analysis underscores the superiority of fuzzy logic in handling
uncertainties, affirming its pivotal role in uncertain environments. This study
represents a foundational stride toward enhancing adaptive inventory manage-
ment strategies, offering a platform for further exploration in dynamic business
landscapes.

6.1. Future Work. Future endeavors could focus on refining fuzzy logic
methodologies within inventory management, exploring advanced machine learn-
ing integration, and validating the proposed model with real-world data for en-
hanced applicability. Conducting extensive sensitivity analyses across varying
scenarios would bolster the model’s adaptability and robustness, thereby ensur-
ing its effectiveness in diverse business environments. Additionally, efforts to de-
velop comprehensive uncertainty measures and their integration into the model
would be valuable for capturing multifaceted uncertainties. Further exploration
might also involve investigating optimization techniques and algorithms to fine-
tune the model’s performance and scalability. Such research avenues would sub-
stantially contribute to the evolution of inventory management strategies and
fortify their applicability in complex, real-time business settings.
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Data availability : Not applicable
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