• 제목/요약/키워드: AdaBoost feature detection

검색결과 43건 처리시간 0.022초

빠른 얼굴 검출을 이용한 실시간 얼굴 인식 시스템 (A Real-time Face Recognition System using Fast Face Detection)

  • 이호근;정성태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1247-1259
    • /
    • 2005
  • 본 연구는 웹카메라와 같은 저해상도의 동영상으로부터 실시간 다중 얼굴 인식 시스템을 제안한다. 동영상을 이용한 얼굴 인식 시스템은 크게 얼굴 검출 단계와 얼굴 분류 단계로 나눌 수 있다. 첫째, 얼굴 검출 단계에서는 빠르고 강인한 객체 검출 성능을 가진 AdaBoost를 이용하여 얼굴 후보 영역을 검출하였고, 검출된 얼굴 후보 영역에 대한 주성분을 수행하여 데이타의 크기기 현저히 줄어든 특징 벡터를 구한 다음에 특징 벡터에 대해 SVM 기반 이진 분류를 수행하여 얼굴 후보 영역을 검증하였다. 둘째, 얼굴 분류 단계에는 주성분 분석과 멀티 SVM을 이용하여 각 얼굴들을 분류하였다. 실험 결과 본 논문에서 제안한 방법은 저해상도에서도 높은 얼굴 검출율과 동영상에서 실시간 처리가 가능한 빠른 다중 얼굴 검출과 인식 성능을 보였다. 또한 팬-틸트 기능을 가진 웹카메라를 이용한 자동 추적형 얼굴 인식 시스템을 적용하여 얼굴 검출 성능을 향상시켰고, 얼굴 인식 시스템의 응용으로 무선 On/off 얼굴인식 도어락 시스템을 구현하였다.

Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로 설계 (Design of High-performance Pedestrian and Vehicle Detection Circuit using Haar-like Features)

  • 김수진;박상균;이선영;조경순
    • 정보처리학회논문지A
    • /
    • 제19A권4호
    • /
    • pp.175-180
    • /
    • 2012
  • 본 논문은 Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로를 제안한다. 제안하는 회로는 영상의 매 프레임 마다 슬라이딩 윈도우를 적용하여 Haar-like 특징을 추출하고 보행자 및 차량을 인식한다. Haar-like 특징 추출 회로는 슬라이딩 윈도우 당 200개의 Haar-like 특징을 추출하며, 추출된 특징들은 AdaBoost 인식 회로에서 사용된다. 제안하는 회로는 속도 향상을 위해 병렬 회로 구조를 적용하였으며 두 개의 슬라이딩 윈도우가 동시에 보행자 또는 차량을 인식한다. 제안하는 고성능 보행자 및 차량 인식 회로는 Verilog HDL로 설계하였으며 130nm 표준 셀 라이브러리를 이용하여 게이트 수준의 회로로 합성하였다. 합성된 회로는 1,388,260개의 게이트로 구성되며 최대 동작 주파수는 203MHz이다. 제안하는 회로는 $640{\times}480$ 영상을 초당 약 47.8장 처리할 수 있기 때문에 보행자와 차량을 실시간으로 인식하기 위해 사용될 수 있다.

3차원 메이크업 시뮬레이션을 위한 자동화된 마스크 생성 (Automatic Mask Generation for 3D Makeup Simulation)

  • 김현중;김정식;최수미
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.397-402
    • /
    • 2008
  • 본 논문에서는 햅틱 인터랙션 기반의 3차원 가상 얼굴 메이크업 시뮬레이션에서 메이크업 대상에 대한 정교한 페인팅을 적용하기 위한 자동화된 마스크 생성 방법을 개발한다. 본 연구에서는 메이크업 시뮬레이션 이전의 전처리 과정에서 마스크를 생성한다. 우선, 3차원 스캐너 장치로부터 사용자의 얼굴 텍스쳐 이미지와 3차원 기하 표면 모델을 획득한다. 획득된 얼굴 텍스쳐 이미지로부터 AdaBoost 알고리즘, Canny 경계선 검출 방법과 색 모델 변환 방법 등의 영상처리 알고리즘들을 적용하여 마스크 대상이 되는 주요 특정 영역(눈, 입술)들을 결정하고 얼굴 이미지로부터 2차원 마스크 영역을 결정한다. 이렇게 생성된 마스크 영역 이미지는 3차원 표면 기하 모델에 투영되어 최종적인 3차원 특징 영역의 마스크를 레이블링하는데 사용된다. 이러한 전처리 과정을 통하여 결정된 마스크는 햅틱 장치와 스테레오 디스플레이기반의 가상 인터페이스를 통해서 자연스러운 메이크업 시뮬레이션을 수행하는데 사용된다. 본 연구에서 개발한 방법은 사용자에게 전처리 과정에서의 어떠한 개입 없이 자동적으로 메이크업 대상이 되는 마스크 영역을 결정하여 정교하고 손쉬운 메이크업 페인팅 인터페이스를 제공한다.

  • PDF

혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법 (A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier)

  • 김정현;등죽;김진영;강동중
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

픽셀 방향코드와 룩업테이블 분류기를 이용한 얼굴 검출 (Face Detection Using Pixel Direction Code and Look-Up Table Classifier)

  • 임길택;강현우;한병길;이종택
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.261-268
    • /
    • 2014
  • Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.

Integral Channel Feature를 이용한 보행자 검출 구현 (Implementation of Pedestrian Detection using Integral Channel Feature)

  • 김동영;이충희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.779-781
    • /
    • 2015
  • 최근 여러 매체에서 화두가 되고 있는 자율 주행 자동차나 Advanced driver assistance systems (ADAS)과 같은 분야에서 보행자 검출 기술은 핵심 요소 기술 중에 하나로 손꼽히고 있다. 특히, 인간의 인지 부하(Cognitive Load)를 고려했을 때, 주행 중에 발생할 수 있는 모든 사건을 다룬다는 것은 매우 어렵기 때문에, 앞서 언급한 방법의 도움을 받아 도로 주행 중에 발생 될 수 있는 인명 사고율을 줄이고자 하는데 그 목적이 있다. 본 논문에서는 Integral Channel Feature를 사용하여 AdaBoost 알고리즘으로 보행자 검출을 위한 분류기를 구현하였다. 그 결과, INRIA에서 제공되는 Pedestrian dataset에서 Detection rate는 97%이상, False positive는 1%에 정도로 나타났다.

간단한 특징에 기반한 얼굴 검출 (The Real-Time Face Detection based on Simple Feature)

  • 임옥현;이우주;이경일;이배호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.247-250
    • /
    • 2004
  • 본 논문에서는 간단한 사각형 특징과 계층적 분류기를 이용하여 실시간으로 얼굴을 검출하는 방법을 제안하고자 한다. 우리는 다섯 가지 형태의 기본적인 특징 모델을 바탕으로 20*20 크기의 훈련 영상에 적용하여 많은 초기 특징 집합을 구성하였다. AdaBoost(Adaptive Boosting) 알고리즘을 이용한 학습을 통하여 초기 특징 집합 중에서 얼굴 검출하는데 강인한 집합들만을 선택하였다. 제안된 알고리즘을 이용한 실제 실험에서 90% 이상의 높은 검출율을 확인하였고 초당 10프레임의 실시간 검출에도 성공하였다.

  • PDF

사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘 (Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems)

  • 강현우;백장운;한병길;정윤수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.408-416
    • /
    • 2017
  • 본 논문에서는 주행 중 사각지역내의 차량을 빠르고 정확하게 실시간으로 검출하는 측후방 차량 검출 알고리즘을 제안한다. 제안 알고리즘은 실시간 처리를 위해 MCT(Modified Census Transformation) 특징벡터를 기반으로 에이다부스트 학습을 통해 생성되는 캐스케이드 분류기를 사용한다. MCT 분류기는 검출윈도우가 작을수록 처리속도가 빠르고, 검출윈도우가 클수록 정확도가 증가한다. 제안 알고리즘은 이러한 특징을 이용하여 검출윈도우가 작은 분류기로 차량후보를 빠르게 생성한 후 보다 큰 사이즈의 검출윈도우를 가지는 분류기로 생성된 차량후보에 대해 정확하게 차량인지 검증한다. 또한, 차량분류기와 바퀴분류기를 동시에 사용하여 사각지역내로 진입하는 차량과 사각지역내의 인접차량을 효과적으로 검출한다.

비정규 영상의 개선을 위한 LAB 컬러조명보정 (LAB color illumination revisions for the improvement of non-proper image)

  • 나종원
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.191-197
    • /
    • 2010
  • 많은 적용과 응용을 하더라도 얼굴 검출의 이미지 분석은 상당히 어렵다. 본 논문으로 불규칙한 조명의 영향으로 미검출되는 얼굴에 조명이 고루 분포되도록 얼굴영역을 검출하였으며, 기존의 정면 얼굴만을 검출하던 결과를 보완하였다. LAB 컬러조명보정으로 기존의 아다부스트 얼굴 검출에 비해 32% 향상된 얼굴검출 결과를 보였다. 입력된 두 영상의 차를 구해 Glassfire 라벨링을 실시했다. Area 임계치 값을 비교하여 임계값 이상의 면적이 되면 제안한 LCFD시스템 알고리즘인 RGB평활화와 LAB영상보정을 하였다. 이렇게 추출된 동작변환 영상을 대상으로 얼굴영역 검출을 실시하였다. 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하였다. 본 논문으로 기울어진 얼굴영역과 멀리 떨어져 있는 얼굴영역, Multi-view 얼굴영역 검출까지 가능하였다. 또한 조명의 방향에 관계없이 높은 검출률을 보였으며, 사용자 인증 분야 등에 일반 PC만으로 적용 가능함이 입증되었다.

에이다부스트 알고리즘을 이용한 인체 영역의 강인한 검출 (Robust Detection of Body Areas Using an Adaboost Algorithm)

  • 장석우;변시우
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.403-409
    • /
    • 2016
  • 최근 들어, 나체 사진이나 그림과 같은 유해한 영상 콘텐츠가 쉽게 유통 및 보급되고 있는 실정이어서 이런 유해 영상 콘텐츠를 효과적으로 검출하고 필터링하기 위한 연구 방법들이 지속적으로 소개되고 있다. 따라서 본 논문에서는 입력되는 칼라 영상으로부터 영상의 유해성을 나타내는 요소인 사람의 배꼽 영역을 하르-라이크(Haar-like) 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 강인하게 검출하는 새로운 접근 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 색상 정보를 이용하여 사람의 유두 영역을 검출하고, 검출된 유두 영역과의 위치 정보를 사용하여 배꼽의 후보 영역을 검출한다. 그런 다음, 하르-라이크 특징과 에이다부스트 알고리즘을 이용한 필터링을 통해 실제 배꼽 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 칼라 영상으로부터 배꼽 영역을 기존의 방법보다 1.6% 더 정확하게 추출한다는 것을 보여준다. 본 논문에서 제안된 배꼽 영역 검출 알고리즘은 2 차원이나 3 차원의 유해 콘텐츠 검출 및 필터링과 관련된 여러 가지 응용 분야에서 매우 효과적으로 이용될 것으로 기대된다.