본 연구는 웹카메라와 같은 저해상도의 동영상으로부터 실시간 다중 얼굴 인식 시스템을 제안한다. 동영상을 이용한 얼굴 인식 시스템은 크게 얼굴 검출 단계와 얼굴 분류 단계로 나눌 수 있다. 첫째, 얼굴 검출 단계에서는 빠르고 강인한 객체 검출 성능을 가진 AdaBoost를 이용하여 얼굴 후보 영역을 검출하였고, 검출된 얼굴 후보 영역에 대한 주성분을 수행하여 데이타의 크기기 현저히 줄어든 특징 벡터를 구한 다음에 특징 벡터에 대해 SVM 기반 이진 분류를 수행하여 얼굴 후보 영역을 검증하였다. 둘째, 얼굴 분류 단계에는 주성분 분석과 멀티 SVM을 이용하여 각 얼굴들을 분류하였다. 실험 결과 본 논문에서 제안한 방법은 저해상도에서도 높은 얼굴 검출율과 동영상에서 실시간 처리가 가능한 빠른 다중 얼굴 검출과 인식 성능을 보였다. 또한 팬-틸트 기능을 가진 웹카메라를 이용한 자동 추적형 얼굴 인식 시스템을 적용하여 얼굴 검출 성능을 향상시켰고, 얼굴 인식 시스템의 응용으로 무선 On/off 얼굴인식 도어락 시스템을 구현하였다.
본 논문은 Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로를 제안한다. 제안하는 회로는 영상의 매 프레임 마다 슬라이딩 윈도우를 적용하여 Haar-like 특징을 추출하고 보행자 및 차량을 인식한다. Haar-like 특징 추출 회로는 슬라이딩 윈도우 당 200개의 Haar-like 특징을 추출하며, 추출된 특징들은 AdaBoost 인식 회로에서 사용된다. 제안하는 회로는 속도 향상을 위해 병렬 회로 구조를 적용하였으며 두 개의 슬라이딩 윈도우가 동시에 보행자 또는 차량을 인식한다. 제안하는 고성능 보행자 및 차량 인식 회로는 Verilog HDL로 설계하였으며 130nm 표준 셀 라이브러리를 이용하여 게이트 수준의 회로로 합성하였다. 합성된 회로는 1,388,260개의 게이트로 구성되며 최대 동작 주파수는 203MHz이다. 제안하는 회로는 $640{\times}480$ 영상을 초당 약 47.8장 처리할 수 있기 때문에 보행자와 차량을 실시간으로 인식하기 위해 사용될 수 있다.
본 논문에서는 햅틱 인터랙션 기반의 3차원 가상 얼굴 메이크업 시뮬레이션에서 메이크업 대상에 대한 정교한 페인팅을 적용하기 위한 자동화된 마스크 생성 방법을 개발한다. 본 연구에서는 메이크업 시뮬레이션 이전의 전처리 과정에서 마스크를 생성한다. 우선, 3차원 스캐너 장치로부터 사용자의 얼굴 텍스쳐 이미지와 3차원 기하 표면 모델을 획득한다. 획득된 얼굴 텍스쳐 이미지로부터 AdaBoost 알고리즘, Canny 경계선 검출 방법과 색 모델 변환 방법 등의 영상처리 알고리즘들을 적용하여 마스크 대상이 되는 주요 특정 영역(눈, 입술)들을 결정하고 얼굴 이미지로부터 2차원 마스크 영역을 결정한다. 이렇게 생성된 마스크 영역 이미지는 3차원 표면 기하 모델에 투영되어 최종적인 3차원 특징 영역의 마스크를 레이블링하는데 사용된다. 이러한 전처리 과정을 통하여 결정된 마스크는 햅틱 장치와 스테레오 디스플레이기반의 가상 인터페이스를 통해서 자연스러운 메이크업 시뮬레이션을 수행하는데 사용된다. 본 연구에서 개발한 방법은 사용자에게 전처리 과정에서의 어떠한 개입 없이 자동적으로 메이크업 대상이 되는 마스크 영역을 결정하여 정교하고 손쉬운 메이크업 페인팅 인터페이스를 제공한다.
The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.
Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.
최근 여러 매체에서 화두가 되고 있는 자율 주행 자동차나 Advanced driver assistance systems (ADAS)과 같은 분야에서 보행자 검출 기술은 핵심 요소 기술 중에 하나로 손꼽히고 있다. 특히, 인간의 인지 부하(Cognitive Load)를 고려했을 때, 주행 중에 발생할 수 있는 모든 사건을 다룬다는 것은 매우 어렵기 때문에, 앞서 언급한 방법의 도움을 받아 도로 주행 중에 발생 될 수 있는 인명 사고율을 줄이고자 하는데 그 목적이 있다. 본 논문에서는 Integral Channel Feature를 사용하여 AdaBoost 알고리즘으로 보행자 검출을 위한 분류기를 구현하였다. 그 결과, INRIA에서 제공되는 Pedestrian dataset에서 Detection rate는 97%이상, False positive는 1%에 정도로 나타났다.
본 논문에서는 간단한 사각형 특징과 계층적 분류기를 이용하여 실시간으로 얼굴을 검출하는 방법을 제안하고자 한다. 우리는 다섯 가지 형태의 기본적인 특징 모델을 바탕으로 20*20 크기의 훈련 영상에 적용하여 많은 초기 특징 집합을 구성하였다. AdaBoost(Adaptive Boosting) 알고리즘을 이용한 학습을 통하여 초기 특징 집합 중에서 얼굴 검출하는데 강인한 집합들만을 선택하였다. 제안된 알고리즘을 이용한 실제 실험에서 90% 이상의 높은 검출율을 확인하였고 초당 10프레임의 실시간 검출에도 성공하였다.
본 논문에서는 주행 중 사각지역내의 차량을 빠르고 정확하게 실시간으로 검출하는 측후방 차량 검출 알고리즘을 제안한다. 제안 알고리즘은 실시간 처리를 위해 MCT(Modified Census Transformation) 특징벡터를 기반으로 에이다부스트 학습을 통해 생성되는 캐스케이드 분류기를 사용한다. MCT 분류기는 검출윈도우가 작을수록 처리속도가 빠르고, 검출윈도우가 클수록 정확도가 증가한다. 제안 알고리즘은 이러한 특징을 이용하여 검출윈도우가 작은 분류기로 차량후보를 빠르게 생성한 후 보다 큰 사이즈의 검출윈도우를 가지는 분류기로 생성된 차량후보에 대해 정확하게 차량인지 검증한다. 또한, 차량분류기와 바퀴분류기를 동시에 사용하여 사각지역내로 진입하는 차량과 사각지역내의 인접차량을 효과적으로 검출한다.
많은 적용과 응용을 하더라도 얼굴 검출의 이미지 분석은 상당히 어렵다. 본 논문으로 불규칙한 조명의 영향으로 미검출되는 얼굴에 조명이 고루 분포되도록 얼굴영역을 검출하였으며, 기존의 정면 얼굴만을 검출하던 결과를 보완하였다. LAB 컬러조명보정으로 기존의 아다부스트 얼굴 검출에 비해 32% 향상된 얼굴검출 결과를 보였다. 입력된 두 영상의 차를 구해 Glassfire 라벨링을 실시했다. Area 임계치 값을 비교하여 임계값 이상의 면적이 되면 제안한 LCFD시스템 알고리즘인 RGB평활화와 LAB영상보정을 하였다. 이렇게 추출된 동작변환 영상을 대상으로 얼굴영역 검출을 실시하였다. 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하였다. 본 논문으로 기울어진 얼굴영역과 멀리 떨어져 있는 얼굴영역, Multi-view 얼굴영역 검출까지 가능하였다. 또한 조명의 방향에 관계없이 높은 검출률을 보였으며, 사용자 인증 분야 등에 일반 PC만으로 적용 가능함이 입증되었다.
최근 들어, 나체 사진이나 그림과 같은 유해한 영상 콘텐츠가 쉽게 유통 및 보급되고 있는 실정이어서 이런 유해 영상 콘텐츠를 효과적으로 검출하고 필터링하기 위한 연구 방법들이 지속적으로 소개되고 있다. 따라서 본 논문에서는 입력되는 칼라 영상으로부터 영상의 유해성을 나타내는 요소인 사람의 배꼽 영역을 하르-라이크(Haar-like) 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 강인하게 검출하는 새로운 접근 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 색상 정보를 이용하여 사람의 유두 영역을 검출하고, 검출된 유두 영역과의 위치 정보를 사용하여 배꼽의 후보 영역을 검출한다. 그런 다음, 하르-라이크 특징과 에이다부스트 알고리즘을 이용한 필터링을 통해 실제 배꼽 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 칼라 영상으로부터 배꼽 영역을 기존의 방법보다 1.6% 더 정확하게 추출한다는 것을 보여준다. 본 논문에서 제안된 배꼽 영역 검출 알고리즘은 2 차원이나 3 차원의 유해 콘텐츠 검출 및 필터링과 관련된 여러 가지 응용 분야에서 매우 효과적으로 이용될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.