Fieldbus system should be designed by considering the number of sensors/actors(actuators+ controllers) and their sampling times. But the number of sensors/actors and which are connected to the network bus can be varied by addition and/or fault of the field devices. That variation decreases the efficiency of system which is off-line designed optimally. This paper proposes an algorithm that ensures transmission of cyclic data even though there is the number change in the field devices. We assign the different weight values to cyclic data and acyclic data. By simulation and experiment, the cyclic and acyclic data are processed via the proposed network, and the results are compared with those of the Profibus system. It is shown that the proposed algorithm is more robust with the uncertainties of the field devices of the control system.
In this paper, we consider three inverse eigenvalue problems for a special type of acyclic matrices. The acyclic matrices considered in this paper are described by a graph called a broom on n + m vertices, which is obtained by joining m pendant edges to one of the terminal vertices of a path on n vertices. The problems require the reconstruction of such a matrix from given partial eigen data. The eigen data for the first problem consists of the largest eigenvalue of each of the leading principal submatrices of the required matrix, while for the second problem it consists of an eigenvalue of each of its trailing principal submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the required matrix as the eigen data. The method of solution involves the use of recurrence relations among the leading/trailing principal minors of ${\lambda}I-A$, where A is the required matrix. We derive the necessary and sufficient conditions for the solutions of these problems. The constructive nature of the proofs also provides the algorithms for computing the required entries of the matrix. We also provide some numerical examples to show the applicability of our results.
결측치가 존재하는 비 단조형 데이터에 대한 패턴 분석과 비 내포형 종속 회귀 모형 분석에 격자 조건부 독립 모델이 최근 도입되고 있다. 이러한 접근 방법은 데이터 패턴 분석에 성공적으로 적용되고 있지만 격자 조건부 독립 모델을 찾는 계산적 부담이 따른다. 본 논문에서는 이러한 단점을 극복하기 위하여 에센셜 그래프를 바탕으로 격자 조건부 독립 모델(LCIM)을 찾는 새로운 방법을 제안한다. 또한, LCIM 클래스가 특정한 비 순환 방향 그래프 모델과 마르코프 동등한 모든 추이적 비 순환 방향 그래프의 모델 클래스와 일치함을 밝혔다.
The graph data structure is popular because it can intuitively represent real-world knowledge. Graph databases have attracted attention in academia and industry because they can be used to maintain graph data and allow users to mine knowledge. Mining reachability relationships between two nodes in a graph, termed reachability query processing, is an important functionality of graph databases. Online traversals, such as the breadth-first and depth-first search, are inefficient in processing reachability queries when dealing with large-scale graphs. Labeling schemes have been proposed to overcome these disadvantages. The state-of-the-art is the 2-hop labeling scheme: each node has in and out labels containing reachable node IDs as integers. Unfortunately, existing 2-hop labeling schemes generate huge 2-hop label sizes because they only consider local features, such as degrees. In this paper, we propose a more efficient 2-hop label size reduction approach. We consider the topological sort index, which is a global feature. A linear combination is suggested for utilizing both local and global features. We conduct experiments over real-world and synthetic directed acyclic graph datasets and show that the proposed approach generates smaller labels than existing approaches.
방향성 비순환 그래프(directed acyclic graph; DAG)라고도 하는 베이지안 네트워크(Bayesian network)는 변수 사이의 관계를 확률과 그래프를 통해 모형화할 수 있다는 점에서 최근 의학, 기상학, 유전학 등 여러 분야에서 다양하게 활용되고 있다. 특히 이산형 자료의 예측에 사용되는 베이지안 네트워크 분류분석기(Bayesian network classifier)가 최근 새로운 데이터 마이닝 기법으로 주목받고 있다. 베이지안 네트워크는 그 구조와 학습 방법에 따라 여러 가지 다양한 모형으로 분류할 수 있다. 본 논문에서는 서로 다른 성질을 가진 이산형 자료를 바탕으로 구조 학습 방법에 차이를 두어 베이지안 네트워크 모형을 학습시킨 후, 가장 간단한 방법인 나이브 베이즈 (naïve Bayes) 모형과 비교해 본다. 학습된 모형들을 여러 가지 실제 데이터에 적용하여 그 예측 정확도를 비교함으로써 최적의 분류 분석 결과를 얻을 수 있는지 살펴본다. 또한 각각의 모형에서 나타나는 그래프를 통해 데이터의 변수 사이의 관계를 비교한다.
Intrusion detection is very important for network situation awareness. While a few methods have been proposed to detect network intrusion, they cannot directly and effectively utilize semi-quantitative information consisting of expert knowledge and quantitative data. Hence, this paper proposes a new detection model based on a directed acyclic graph (DAG) and a belief rule base (BRB). In the proposed model, called DAG-BRB, the DAG is employed to construct a multi-layered BRB model that can avoid explosion of combinations of rule number because of a large number of types of intrusion. To obtain the optimal parameters of the DAG-BRB model, an improved constraint covariance matrix adaption evolution strategy (CMA-ES) is developed that can effectively solve the constraint problem in the BRB. A case study was used to test the efficiency of the proposed DAG-BRB. The results showed that compared with other detection models, the DAG-BRB model has a higher detection rate and can be used in real networks.
Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant's seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC) and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, $^1H$ NMR, $^{13}C$ NMR and high-resolution mass spectrometry) data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: $5-15{\mu}g/mL$) on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96), Bacillus cereus (MTCC 430), Escherichia coli (MTCC 1689) and Acinetobacter baumannii (MTCC 9829). Results: Extensive spectroscopic studies showed the structure of the isolated compound to be an acyclic isoprenoid ($C_{21}H_{32}O$). Moreover, the isoprenoid showed a remarkable inhibition of bacterial growth at a concentration of $15{\mu}g/mL$ compared to the two other doses tested (5 and $10{\mu}g/mL$) and to tetracycline, a commercially available antibiotic that was used as a reference drug. Conclusion: The isolation of an antimicrobial compound from Semecarpus anacardium seeds validates the use of this plant in the treatment of infections. The isolated compound found to be active in this study could be useful for the development of new antimicrobial drugs.
토양에서 얻어진 흄산(HA)을 한외 여과법을 이용 분자량에 따라 4개의 소부분(F1 : 100,000 dalton 이상; F2 : 100,000 dalton 이하;10,000 dalton 이하; F4 : 2,000 dalton 이하)으로 분리한 뒤 적외선 분광법과 핵자기 공명 분광법을 통하여 각 소부분들의 분광학적 특성을 규명하고 상호간에 비교 분석하였다. 4개 소부분들의 $1^H$과 $13^C$ NMR 스펙트럼은 전체적인 특성에서 모두 흄산 모액 스펙트럼과 유사하게 나타났다. 이 결과는 분자량이 변하더라도 흄산의 전체적 특성이 그대로 유지됨을 제시한다. 차이점으로는 IR 스펙트럼 결과 분자량이 적어지면서 다당류 성분 함량이 다소 감소된 반면 카르복실기 성분 함량은 조금 증가된 것으로 나타났다.
The Journal of Asian Finance, Economics and Business
/
제8권8호
/
pp.149-156
/
2021
Gambling negatively affects the economy, and it brings unwanted financial, social, and health outcomes to gamblers. On the one hand, unemployment is argued to be a leading cause of gambling. On the other hand, gambling can cause unemployment in the second-order via gambling-induced poor health, falling productivity, and crime. In terms of significant effects, previous studies were able to establish an association, but not causality. The current study examines the time-sequence and contemporaneous causalities between lottery gambling and unemployment in Thailand. The Granger causality and directed acyclic graph (DAG) tests employ time-series data on gambling- and unemployment-related Google Trends indexes from January 2004 to April 2021 (208 monthly observations). These tests are based on the estimates from a vector autoregressive (VAR) model. Granger causality is a way to investigate causality between two variables in a time series. However, this approach cannot detect the contemporaneous causality among variables that occurred within the same period. The contemporaneous causal structure of gambling and unemployment was identified via the data-determined DAG approach. The use of time-series Google Trends indexes in gambling studies is new. Based on this data set, unemployment is found to contemporaneously cause gambling, whereas gambling Granger causes unemployment. The causalities are circular and last for four months.
본 연구는 2000~2013년까지의 월별 시계열 자료를 이용하여 실물 금융변수와 해운경기간의 동태적 상관관계를 분석한다. 특히, 2008년 글로벌위기 이후 운임지수의 지속적인 하락국면에서 실물 금융변수가 얼마만큼의 영향을 미쳤는가를 중심으로 분석하였다. 모형의 적합성과 예측력 비교를 위해 기존의 일반적인 VAR 모형과 베이지안 VAR를 비교하였으며, VAR 모형 설정에 있어 외생성을 보다 객관적으로 도출하기 위해 DAG(Directed Acyclic Graph)를 활용하여 충격반응분석을 실시하고 각각의 모형에 대한 예측력을 비교하였다. 분석결과 BDI에 대한 금융 실물 부문의 영향에 대하여 베이지안 VAR 모형의 충격반응분석 결과는 일반적인 VAR 모형보다 명확하게 드러났으며, 두 모형 간의 예측력을 검정한 결과 베이지안 VAR 모형의 예측력이 매우 우월한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.