
KYUNGPOOK Math. J. 57(2017), 211-222

https://doi.org/10.5666/KMJ.2017.57.2.211

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Inverse Eigenvalue Problems with Partial Eigen Data for
Acyclic Matrices whose Graph is a Broom

Debashish Sharma∗

Department of Mathematics, Gurucharan College, Silchar-788004, Assam, India

e-mail : debashish0612@gmail.com

Mausumi Sen

Department of Mathematics, National Institute of Technology, Silchar-788010, As-

sam, India

e-mail : senmausumi@gmail.com

Abstract. In this paper, we consider three inverse eigenvalue problems for a special type

of acyclic matrices. The acyclic matrices considered in this paper are described by a graph

called a broom on n+m vertices, which is obtained by joining m pendant edges to one of

the terminal vertices of a path on n vertices. The problems require the reconstruction of

such a matrix from given partial eigen data. The eigen data for the first problem consists

of the largest eigenvalue of each of the leading principal submatrices of the required matrix,

while for the second problem it consists of an eigenvalue of each of its trailing principal

submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the

required matrix as the eigen data. The method of solution involves the use of recurrence

relations among the leading/trailing principal minors of λI − A, where A is the required

matrix. We derive the necessary and sufficient conditions for the solutions of these prob-

lems. The constructive nature of the proofs also provides the algorithms for computing

the required entries of the matrix. We also provide some numerical examples to show the

applicability of our results.

1. Introduction

Problems concerning the reconstruction of specially structured matrices from
given information on some or all of their eigenvalues or eigenvectors, are of special
interest in mathematics. Such problems are called Inverse eigenvalue problems
(IEPs). The type of given eigen data and the structure of the required matrices
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determine the level of difficulty of the problems. M. T. Chu in [1] gave a detailed
characterization of various classes of inverse eigenvalue problems. Some special
types of inverse eigenvalue problems were studied in [4, 5, 6, 14, 17]. Many of
these problems considered the matrices to be tridiagonal, Jacobi matrix, or arrow
matrix. Eigenvalue problems for matrices with prescribed graphs have also been
studied in [2, 3, 8, 11, 12]. Sharma and Sen in [15, 16] studied some IEPs where the
matrices to be constructed were described by some special graphs. In particular,
acyclic matrices whose graph is a path and matrices whose graph is a broom were
studied. IEPs occur in various problems in mechanical vibrations, control theory,
pole assignment problems and graph theory [1, 7, 11, 13].

In this paper, we study three IEPs which require the reconstruction of matrices
whose graph is a broom. The eigen data in each of the three problems are different
and so are the structures of the matrices to be constructed. For the first problem,
the given eigen data consists of the largest eigenvalue of each of the leading principal
submatrices of the required matrix. In the second problem, an eigenvalue of each
of the trailing principal submatrices of the required matrix is given in the eigen
data. The third problem has an eigenvalue and a corresponding eigenvector of the
required matrix as the eigen data. We adopt a suitable scheme of labelling the
vertices of the broom in order to express the corresponding matrices in a special
form which simplifies the computation.

2. Preliminaries

Mathematically, we can define a graph with sets. Throughout this paper we
assume that the graphs under consideration are free of multiple edges or loops and
are undirected. With this assumption we have the following description of a graph
: Let V be a finite set and let P be the set of all subsets of V which have two
distinct elements. Let E ⊂ P . Then G = (V,E) is said to be a graph with vertex
set V and edge set E. The vertex set of a graph G is denoted by V (G) and the
edge set is denoted by E(G). If u, v ∈ V and {u, v} ∈ E then we say that uv is
an edge and u and v are called adjacent vertices. The degree of a vertex u is the
number of edges which are incident on u. A vertex of degree one is called a pendant

vertex. A path of a graph G is a sequence of distinct vertices v1, v2, . . . , vn such that
consecutive vertices are adjacent. A graph is said to be connected if there exists a
path between every pair of its vertices. A cycle is a connected graph in which each
vertex is adjacent to exactly two other vertices. A connected graph without any
cycles is called a tree.

Given an n × n symmetric matrix A, the graph of A, denoted by G(A), has
vertex set V (G) = {1, 2, 3, . . . , n} and edge set {ij : i 6= j, aij 6= 0}. For a graph G

with n vertices, S(G) denotes the set of all n×n symmetric matrices which have G
as their graph. A matrix whose graph is a tree is called an acyclic matrix. We have
considered a special tree, namely broom Bn+m (Figure 1), which can be obtained
by joining m pendant vertices to one of the terminal vertices of a path on n vertices.

The structure of a matrix A ∈ S(Bn+m) will depend on the way of labelling the
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Figure 1: Broom Bn+m

n +m vertices from 1, 2, . . . , n +m as the rows and columns of A will be indexed
by the vertices of Bn+m. The broom is formed by adjoining m pendant vertices to
one of the terminal vertices of a path on n vertices. We label the vertices of the
broom in such a way that the vertices numbered from 1 to n are the vertices of this
path on n vertices. And then we label the pendant vertices adjacent to the vertex
labelled as n, with the numbers from 1 to m. This system of labelling has been
shown in Figure 1. Under this scheme of labelling, the matrix of a broom Bn+m

will be of the following form :

An+m =











































a1 b1 0 . . . 0 0 0 0 . . . 0
b1 a2 b2 . . . 0 0 0 0 . . . 0

0 b2 a3

. . . 0 0 0 0 . . . 0
...

...
. . .

. . .
...

...
...

...
...

...
0 0 0 . . . an−1 bn−1 0 0 . . . 0
0 0 0 . . . bn−1 an bn bn+1 . . . bn+m−1

0 0 0 . . . 0 bn an+1 0 . . . 0

0 0 0 . . . 0 bn+1 0 an+2

. . . 0
...

...
...

...
...

...
...

. . .
. . .

...
0 0 0 . . . 0 bn+m−1 0 0 . . . an+m











































(n+m)×(n+m)

where the bi’s are non zero. Here, the matrix corresponding to the subgraph
of Bn+m formed with the first n vertices is a tridiagonal matrix with all non-zero
entries in the sub-diagonal and super diagonal. And the matrix corresponding to
the subgraph formed with the vertex n and the pendants attached to it is an arrow
matrix with non-zero off-diagonal entries in the first row and first column. If An+m

is the adjacency matrix, as required in IEPB2 and IEPB3, then ai = 0 for all
i = 1, 2, . . . , n+m and bj = 1 for all j = 1, 2, . . . , n+m− 1.

Throughout this paper we shall use the following notation :

1. Aj will denote the j × j leading principal sub-matrix of the matrix An+m.
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2. Pj(λ) = det(λIj − Aj) for j = 1, 2, . . . , n+m. For convenience of notations,
P0(λ) is defined to be 1 for all λ.

3. Aj,n+m denotes the (n + m − j + 1) × (n + m − j + 1) trailing principal
sub-matrix of An+m.

4. Pj,n+m(λ) = det(λIn+m−j+1 − Aj,n+m) for IEPB1 and Pj,n+m(λ) =
det(λIn+m−j+1 − (Aj,n+m +Dj,n+m)) for IEPB2 and IEPB3.

3. IEPs to be Studied

• IEPB1 Given n+m real numbers λ1, λ2, · · · , λn, λn+1, · · · , λn+m, find
a matrix An+m ∈ S(Bn+m) such that its diagonal entries are equal to a and
λj is the largest eigenvalue of Aj i.e. of the j× j leading principal sub-matrix
of An+m.

• IEPB2 Given n+m distinct real numbers λ1, λ2, · · · , λn, λn+1, · · · , λn+m

and the adjacency matrix An+m of Bn+m, find a diagonal matrix Dn+m =
diag(a1, a2, . . . , an+m) such that λj is an eigenvalue of Aj,n+m +Dj,n+m, i.e.
of the (n + m − j + 1) × (n + m − j + 1) trailing principal sub-matrix of
An+m +Dn+m.

• IEPB3 Given a real vector X = (x1, x2, . . . , xn+m)T , a non zero real number
λ and the adjacency matrix An+m of Bn+m, find a diagonal matrix Dn+m =
diag(a1, a2, . . . , an+m) such that (λ,X) is an eigenpair of An+m +Dn+m.

4. Solution of IEPB1

For solving IEPB1, we analyze the expressions for the successive leading princi-
pal minors of λIn+m − An+m and apply Cauchy’s interlacing theorem([8, 9]). The
following Lemmas will be necessary for solving the problem. The main result of
this section is given as Theorem 4.4.

Lemma 4.1. Let P (λ) be a monic polynomial of degree n with all real eigenvalues

and λ1 and λn be the minimal and maximal zero of P respectively.

1. If µ < λ1, then (−1)nP (µ) > 0

2. If µ > λn, then P (µ) > 0

The proof immediately follows after expressing the polynomial as a product of
its linear factors.

Lemma 4.2. The characteristic polynomials of the j × j leading principal subma-

trices of An+m satisfy the following recurrence relations :

1. P1(λ) = λ− a
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2. Pj(λ) = (λ− a)Pj−1(λ)− b2j−1Pj−2(λ), 2 ≤ j ≤ n+ 1

3. Pn+j(λ) = (λ− a)Pn+j−1(λ)− b2n+j−1(λ− a)j−1Pn−1(λ), 2 ≤ j ≤ m

This follows by computing the determinants of the successive leading principal
submatrices of λIn+m −An+m.

Lemma 4.3. For any λ ∈ R, Pj−1(λ) and Pj(λ) cannot be simultaneously zero,

for 2 ≤ j ≤ n+ 1.

Proof. If P1(λ) = 0, then P2(λ) = (λ − a)P1(λ) − b21 = −b21 6= 0. Thus P1(λ)
and P2(λ) cannot be simultaneously zero. Now if for 3 ≤ j ≤ n + 1, Pj(λ) = 0
and Pj−1(λ) = 0, then from the second recurrence relation in Lemma 4.3, we have
Pj−2(λ) = 0. This will ultimately lead to P2(λ) = 0 and P1(λ) = 0 which is not
possible as argued above.

Theorem 4.4. The IEPB1 has a solution if and only if λ1 < λ2 < · · · < λn+m.

The solution is given by

a = λ1

bj−1 =

√

(λj − λ1)Pj−1(λj)

Pj−2(λj)
, 2 ≤ j ≤ n+ 1

bn+j−1 =

√

Pn+j−1(λn+j)

(λn+j − λ1)j−2Pn−1(λn+j)
, 2 ≤ j ≤ m

The solution is unique except for the signs of the off-diagonal entries.

Proof. We first suppose that the problem has a solution. We find the expressions
for a and bi, i = 1, 2, . . . , n + m. Since λ1 is an eigenvalue of A1, so P1(λ1) = 0.
This gives a = λ1. Now for 2 ≤ j ≤ n+ 1, λj is an eigenvalue of Aj , so

Pj(λj) = 0

⇒ (λj − λ1)Pj−1(λj)− b2j−1Pj−2(λj) = 0

⇒ b2j−1 =
(λj − λ1)Pj−1(λj)

Pj−2(λj)

Similarly λn+j is an eigenvalue of An+j and so Pn+j(λn+j) = 0. Thus,

b2n+j−1 =
Pn+j−1(λn+j)

(λn+j − λ1)j−2Pn−1(λn+j)

Now, for the problem to have a solution, the quantity in RHS of the above expres-
sions for b2i must be positive. First, we claim λj − λ1 > 0 for all j = 2, 3, . . . , n.
By Cauchy’s interlacing theorem([8, 9]), the eigenvalues of a symmetric matrix and
those of any of its principal submatrix interlace each other. Since each λj is the
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largest eigenvalue of the j × j leading principal submatrix of An+m, so it follows
that

(4.1) λ1 ≤ λ2 ≤ · · · ≤ λn+m−1 ≤ λn+m

Thus λj ≥ λj−1 for all j = 2, 3, . . . , n + m. Hence λj − λ1 ≥ 0 for all
j = 2, 3, . . . , n+m. Next we show that the inequality (4.1) is strict. If λj−1 = λj

for some j with 1 ≤ j ≤ n + 1, then we have Pj−1(λj) = 0 = Pj(λj) but this is
not possible according to Lemma 4.3. Thus λ1 < λ2 < · · · < λn+1. Now if
λn+j−1 = λn+j for some j with 2 ≤ j ≤ m, then Pn+j−1(λn+j) = 0 = Pn+j(λn+j)
and by the fourth recurrence relation from Lemma 4.2, we get Pn−1(λn+j) = 0.
This implies that λn+j is a root of Pn−1(λ) but λn−1 is the largest root of Pn−1(λ)
and so the inequality (4.1) will imply that λn−1 = λn = λn+1 = · · · = λn+j .
Thus we end up with Pn−1(λn+j) = 0 and Pn(λn+j) = 0 but this is not possible
as they cannot be simultaneously zero, by Lemma 4.3. Hence the inequality (4.1)
must be strict.

Now since λ1 < λ2 < · · · < λn+m and also each since λi is the largest root
of Pi(λ), so by Lemma 4.1, we have Pj−2(λj) > 0, Pj−1(λj) > 0, Pn−1(λn+1) >

0, Pn(λn+1) > 0. Hence, the expressions for b2i are all positive. Thus the solution
of IEPB1 is given by

(4.2)

a = λ1

bj−1 =

√

(λj − λ1)Pj−1(λj)

Pj−2(λj)
, 2 ≤ j ≤ n+ 1

bn+j−1 =

√

Pn+j−1(λn+j)

(λn+j − λ1)j−2Pn−1(λn+j)
, 2 ≤ j ≤ m

Conversely if λ1 < λ2 < · · · < λn+m, then by the above argument, the
expressions for b2i are all positive, so that the IEPB1 has a solution.

5. Solution of IEPB2

Lemma 5.1. The characteristic polynomials of the (n+m− j +1)× (n+m− j +
1) trailing principal submatrices of An+m +Dn+m satisfy the following recurrence

relations :

1. Pj,n+m(λ) = (λ− aj)Pj+1,n+m(λ)− Pj+2,n+m(λ), 1 ≤ j ≤ n− 1

2. Pn,n+m(λ) = (λ− an)

m
∏

i=1

(λ− an+i)−

m
∑

j=1

m
∏

i=1,i6=j

(λ− an+i)

3. Pn+j,n+m(λ) =
m
∏

i=j

(λ − an+i), 1 ≤ j ≤ m
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This can be proved by computing the determinants of the successive trailing
principal submatrices of λIn+m − (An+m + Dn+m). The following theorem gives
the solution of IEPB2 :

Theorem 5.2. The IEPB2 has a solution if and only if Pj+1,n+m(λj) 6= 0 for all

j = 1, 2, . . . , n− 1. The solution, if it exists, is unique and is given by

(5.1)

an+j = λn+j , m ≥ j ≥ 1

an = λn −

∑m

j=1

∏m

i=1,i6=j(λn − λn+i)
∏m

i=1
(λn − λn+i)

aj = λj −
Pj+2,n+m(λj)

Pj+1,n+m(λj)
, n− 1 ≥ j ≥ 1

Proof. We first suppose that the IEPB2 has a solution. We derive the explicit
expressions for all the diagonal elements of An+m + Dn+m. Since λn+m is an
eigenvalue of An+m,n+m + Dn+m,n+m, so Pn+m,n+m(λn+m) = 0. Using the third
recurrence relation from Lemma 4.1, we get (λn+m−an+m) = 0 which gives an+m =
λn+m. Similarly, since λn+m−1 is an eigenvalue of An+m−1,n+m +Dn+m−1,n+m, so
(λn+m−1 − an+m−1)(λn+m−1 − λn+m) = 0. Also, λn+m−1 6= λn+m. So we get
an+m−1 = λn+m−1. Proceeding this way it can be shown that

(5.2) an+j = λn+j , m ≥ j ≥ 1

Next, since λn is an eigenvalue of An,n+m +Dn,n+m, so from the second recurrence
relation in Lemma 4.1, we have

Pn,n+m(λn) = 0

⇒ (λn − an)
m
∏

i=1

(λn − an+i)−
m
∑

j=1

m
∏

i=1,i6=j

(λn − an+i) = 0

⇒ an = λn −

∑m

j=1

∏m

i=1,i6=j(λn − λn+i)
∏m

i=1
(λn − λn+i)

which gives

(5.3) an = λn −

∑m

j=1

∏m

i=1,i6=j(λn − λn+i)
∏m

i=1
(λn − λn+i)

which exists as the given eigenvalues are distinct. Again, since λj is an eigenvalue
of Aj,n+m +Dj,n+m, so Pj,n+m(λj) = 0 and so from the first recurrence relation of
Lemma 4.1, we get

(5.4) aj = λj −
Pj+2,n+m(λj)

Pj+1,n+m(λj)
, n− 1 ≥ j ≥ 1
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which exists only if Pj+1,n+m(λj) 6= 0 for all j = 1, 2, . . . , n− 1.
Conversely, if Pj+1,n+m(λj) 6= 0 for all j = 1, 2, . . . , n − 1, then proceeding

as above we can deduce equations (5.2), (5.3) and (5.4), and so the IEPB2 has a
solution.

6. Solution of IEPB3

Lemma 6.1. The entries of the matrix An+m +Dn+m and of the vector X satisfy

the following relations :

1. a1x1 + x2 = λx1

2. xj−1 + ajxj + xj+1 = λxj , 2 ≤ j ≤ n− 1

3. xn−1 + anxn +

m
∑

j=1

xn+j = λxn

4. xn + an+jxn+j = λxn+j , 1 ≤ j ≤ m

It can be proved by equating the successive leading principal submatrices on
both sides of (An+m +Dn+m)X = λX . The main result of this section is given in
the following theorem :

Theorem 6.2. The IEPB3 has a unique solution if and only if xj 6= 0 for all

j = 1, 2, . . . , n+m. The unique solution is given by

a1 =
1

x1

(λx1 − x2)

aj =
1

xj

(λxj − xj−1 − xj+1), 2 ≤ j ≤ n− 1

an =
1

xn



λxn − xn−1 −

m
∑

j=1

xn+j





an+j =
1

xn+j

(λxn+j − xn), 1 ≤ j ≤ m

Proof. First, we suppose that the IEPB3 has a unique solution i.e. there exists a
unique diagonal matrixDn+m = diag(a1, a2, . . . , an+m) such that (λ,X) is an eigen-
pair of An+m+Dn+m. Thus, (An+m+Dn+m)X = λX . Equating the corresponding
entries on both sides, we get as in Lemma 6.1,

a1x1 + x2 = λx1

xj−1 + ajxj + xj+1 = λxj , 2 ≤ j ≤ n− 1

xn−1 + anxn +

m
∑

j=1

xn+j = λxn

xn + an+jxn+j = λxn+j , 1 ≤ j ≤ m
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Each of the above equations is linear in aj . Since the IEPB3 has a unique solution,
so each of these linear equations must have unique solution. Hence the coefficient
of each aj must be non zero i.e. xj 6= 0 for all j = 1, 2 . . . , n+m. Thus, solving the
above linear equations for each aj , we get

(6.1)

a1 =
1

x1

(λx1 − x2)

aj =
1

xj

(λxj − xj−1 − xj+1), 2 ≤ j ≤ n− 1

an =
1

xn



λxn − xn−1 −

m
∑

j=1

xn+j





an+j =
1

xn+j

(λxn+j − xn), 1 ≤ j ≤ m

Conversely, if xj 6= 0 for all j = 1, 2, . . . , n + m, then proceeding as above we
can arrive at the expressions as in (6.1), concluding that the IEPB3 has a unique
solution.

7. Numerical Examples

The results obtained in the preceding sections have been formulated as scripts
in SCILAB 5.5.2 to solve the inverse eigenvalue problems for any eigen data entered
by the user. The numerical examples here have been obtained by executing the
corresponding scripts in SCILAB. The entries are correct up to 4 places of decimal.

Example 7.1. Given 7 real numbers λ1 = −1, λ2 = 2, λ3 = 3.5, λ4 = 6.92, λ5 =
8, λ6 = 9.5, λ7 = 12.4, construct A3+4 ∈ S(B3+4) such that λj is the largest
eigenvalue of Aj .

Solution. Since λ1 < λ2 < · · · < λ7, so by Theorem 4.4, we obtain the solution
as

A3+4 =





















−1 3 0 0 0 0 0
3 −1 3.3541 0 0 0 0
0 3.3541 −1 7.0421 4.3303 5.4458 8.3496
0 0 7.0421 −1 0 0 0
0 0 4.3303 0 −1 0 0
0 0 5.4458 0 0 −1 0
0 0 8.3496 0 0 0 −1





















We compute the eigenvalues of the successive leading principle submatrices. The
given eigenvalues are written in bold font to illustrate that the conditions of the
problem are satisfied.

σ(A1) = {-1}
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σ(A2) = {−4,2}
σ(A3) = {−5.5,−1,3.5}
σ(A4) = {−8.92,−3.6675, 1.6675,6.92}
σ(A5) = {−10,−3.7557,−1, 1.7557,8}
σ(A6) = {−11.5,−3.8284,−1,−1, 1.8284,9.5}
σ(A7) = {−14.4,−3.8994,−1,−1,−1, 1.8994,12.4}

Example 7.2. Given 7 real numbers λ1 = 9, λ2 = 1, λ3 = 2, λ4 = 7, λ5 =
4, λ6 = 5, λ7 = 6, and the adjacency matrix A3+4 of B3+4, find a diagonal matrix
D3+4 such that λj is an eigenvalue of Aj,3+4 +Dj,3+4.

Solution. By Theorem 5.2, we obtain the solution as

A3+4 +D3+4 =





















8.8576 1 0 0 0 0 0
1 1.7500 1 0 0 0 0
0 1 3.2833 1 1 1 1
0 0 1 7.0000 0 0 0
0 0 1 0 4.0000 0 0
0 0 1 0 0 5.0000 0
0 0 1 0 0 0 6.0000





















We compute the spectra of the successive trailing principal submatrices of
A3+4 + D3+4. The given eigenvalues are written in bold font to show that the
conditions of the problem are satisfied.

σ(A1,3+4 +D1,3+4) = {0.9236, 2.6075, 4.3206, 5.3229, 6.3206, 7.3958,9}
σ(A2,3+4 +D2,3+4) = {1, 2.6661, 4.3229, 5.3244, 6.3218, 7.3982}
σ(A3,3+4 +D3,3+4) = {2, 4.2952, 5.3046, 6.3063, 7.3772}
σ(A4,3+4 +D4,3+4) = {4, 5, 6,7}
σ(A5,3+4 +D5,3+4) = {4, 5, 6}
σ(A6,3+4 +D6,3+4) = {5, 6}
σ(A7,3+4 +D7,3+4) = {6}

Example 7.3. Given a real vector X = (−1, 2, 3.5, 6.92, 8, 9.5, 12.4)T, a real num-
ber λ = 2 and the adjacency matrix A3+4 of B3+4, find a diagonal matrix D3+4

such that (λ,X) is an eigenpair of A3+4 +D3+4.

Solution. Since each component of the vector X is non-zero, so by Theorem 6.2,
we obtain the solution as

A3+4 +D3+4 =





















4 1 0 0 0 0 0
1 0.75 1 0 0 0 0
0 1 −9.0914 1 1 1 1
0 0 1 1.4942 0 0 0
0 0 1 0 1.5625 0 0
0 0 1 0 0 1.6316 0
0 0 1 0 0 0 1.7177




















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8. Conclusion

The inverse eigenvalue problems considered in this paper fall into the category
of partially described inverse eigenvalue problems, as the eigen data consists of one
eigenvalue each of the leading/trailing principal submatrices of the required matrix.
Such partially described problems may occur in various computations involving a
complicated physical system where it is often impossible to obtain the entire spectral
information. We are also studying similiar problems for more general trees instead
of a broom, for example in case of a tree with only one diametrical path such that
each non-terminal vertex is of degree four. The problems may get complicated for
acyclic matrices whose graphs are trees with more than one diametrical path. Such
problems can be challenging and interesting.

Acknowledgements. The authors are thankful to the anonymous reviewers
for their valuable comments and suggestions.
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