• Title/Summary/Keyword: Actual Load

Search Result 1,389, Processing Time 0.025 seconds

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

A Study on the Expection of the Stress to the Stiffness Variation of Members on Truss Railway Bridge (부재의 강성변화에 따른 강철도 트러스 교량의 발생응력 예측에 관한 연구)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.535-541
    • /
    • 1997
  • It is proper that the load distribution and the actual stress of members is analyzed by field measurement in estimating to the behavior of truss railway bridges, but those procedures are very difficult. So, the studies for the deduction of the stress, using the indirect data which are able to get from the research and investigation without field measurement, are needed. In this study, to investigate quantitically the variation of the stress of members, the stresses are obtained from the simulation which is considered the the reduction of the section area and the stiffness due to the corrosion and the degree of the stress ratio and the distribution is calculated. As the results, the stress of truss members is almost lineary increased to the decreasing of the area and the lower chord is greatly affected. And the increasing of the stress is predicted by the superposition to the results of the amount of that in each members.

  • PDF

A Numerical Study on Wind Pressure Characteristics of Super-tall Protype Model considering the Effect of Turbulence Intensity (난류강도의 영향을 고려한 초고층 프로토타입 모델의 풍압특성에 관한 수치 해석적 연구)

  • Jeong, So-Young;Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.659-667
    • /
    • 2011
  • Wind tunnels tests have been evaluating wind load estimation by discussing the most important design elements in very tall buildings. Such tests have some uncertainties, however, with respect to the data of the reduced model and the calculated empirical values. In contrast, CFD analysis can simulate the actual scale and shorten the time of simulation. Nevertheless, the utilization of CFD analysis is negligible because of its low reliability. In this paper, the reliability of CFD analysis will be proven by comparing the results of a wind tunnel test and CFD analysis for the prototype models shown in previous studies. The effect of the turbulence intensity on the reliability is also presented.

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

A Study on the Behavior of the Plane Stress Fracture Toughness - About the Compact Tension Specimen- (平面應力 破壞靭性値 擧動에 관한 硏究)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.937-946
    • /
    • 1986
  • In this paper, the plane stress fracture toughness of low carbon steel with 3mm thickness is investigated for various specimen widths and crack ratios using the J integral. The experiments is carried out for the compact tension(CT) specimen on an Instron machine. For materials that may be approximated by the Ramberg and Osgood stress strain law, the relevant crack parameter like the J integral and load line displacement are approximately normalized. Crack driving forces in terms of J integral is computed using the above estimation scheme. Abtained results are summarized as follows. (1) The plane stress fracture toughness, J$_{c}$, is almost constant in the range 50-70mm of width. Hence J$_{c}$ can be obtained by using smaller specimen than ASTM standard. (2) Yoon's and Simpson's formular which considers crack growth in obtaining J integral show more consevative J than Rice's and Merkle's (3) J$_{c}$ is almost constant in the range 0.499-0.701 crack ratios tested. J$_{c}$ obtained by using Kumar's formular is 28.14kgf/mm for base metal specimen and 32.51kgf/mm for annealed. (4) Comparison of the prediction with actual experimental measurements by Yoon's formular show good agreement for several different-size specimens.

A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve (카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성)

  • Yun, So-Nam;Lee, Ill-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF

Curling Behavior of Long-Span Concrete Pavement Slab under Environmental Loads (환경하중에 의한 장스팬 콘크리트 포장 슬래브의 컬링 거동 특성 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom;Yun, Dong-Ju
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.151-161
    • /
    • 2009
  • This study was conducted to investigate the characteristics of the curling behavior of long-span pavement slabs under environmental loads. By developing and using finite element models of the long-span pavement slabs, the stress distribution and the effects of slab length, slab thickness, stiffness of underlying layers, and the restraints of the slab ends on the curling behavior were analyzed. In addition, the field experiments were performed with the actual long-span pavement slab to obtain the curling behavior of the real structure under environmental loads. As a result of this study, it was found that the vertical displacements of the long-span pavement slab along the centerline due to the curling behavior were zero except for the areas near the slab ends, and the curling stresses were maximum and constant where the displacements were zero. The slab length and the stiffness of underlying layers did not affect the maximum curling stresses. The restraints at the slab ends made the curling stresses occur near the slab ends, but did not much affect the maximum curling stresses.

  • PDF

Validation Study on Processing Grip Part of Tensile Specimen Acquired from Corroded Pipeline (부식이 존재하는 기존 노후 관로에서 인장 시편 가공 시 그립 가공 타당성에 대한 연구)

  • Nam, Young Jun;Kim, Jeong Hyun;Bae, Cheol Ho;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.191-195
    • /
    • 2020
  • In this work, tensile tests, one of the most common test method to assess the condition of a corroded pipe, were conducted. According to ASTM E8 method, the use of flat or curved uni-axial tension test is allowed under the recommendation with the usage of grips corresponding to a curvature of the pipe. However, this method is not for corroded specimen. Furthermore, in the case of performing the multiple tensile tests with various curvatures, it is desirable not to produce zigs that fit each curvatures, if merely processing the specimen grip with curvature into the flat grip can show almost identical tensile behavior. Therefore, various tension simulations were conducted first to check if there exist any differences. Also, experiments on corroded tensile specimen were conducted and compared with the FEM simulation that reflects the actual geometry acquired from the 3D scanner.

Current Status on the Development and Application of Fatigue Monitoring System for Nuclear Power Plants (원전 피로 감시 시스템 개발 및 적용 현황)

  • Boo, Myung Hwan;Lee, Kyoung Soo;Oh, Chang Kyun;Kim, Hyun Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Metal fatigue is an important aging mechanism that material characteristics can be deteriorated when even a small load is applied repeatedly. An accurate fatigue evaluation is very important for component structural integrity and reliability. In the design stage of a nuclear power plant, the fatigue evaluations of the Class 1 components have to be performed. However, operating experience shows that the design evaluation can be very conservative due to conservatism in the transient severity and number of occurrence. Therefore, the fatigue monitoring system has been considered as a practical mean to ensure safe operation of the nuclear power plants. The fatigue monitoring system can quantify accumulated fatigue damage up to date for various plant conditions. The purpose of this paper is to describe the fatigue monitoring procedure and to introduce the fatigue monitoring program developed by the authors. The feasibility of the fatigue monitoring program is demonstrated by comparing with the actual operating data and finite element analysis results.

A Study on Improving Power Quality by Real-time Reactive Power/Power Factor Compensating Equipment at Substation in Marshalling Yard (전기철도 차량기지 변전소의 실시간 무효전력/역률 보상설비 적용에 따른 전력품질 개선에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.58-67
    • /
    • 2006
  • In this paper, real-time reactive power/power factor compensating equipment is suggested for improving power quality at electrical railway's substation in marshalling yard and designing optimal capacity of compensating equipment for actual apply at current marshalling yard. For this purpose, several kind of real-time reactive power/power factor compensating equipments are introduced and SVG(Static Var Generator) as optimal compensating equipment that is suitable for load characteristics of substation in marshalling yard is suggested. This paper shows proper simulations by suggested equipment using PSIM software and describe basic compensating principle and simulation results. Optimal capacity design for applying current marshalling yard is based on real measured power quality data. Power quality improvement that is performed by SVG as real-time reactive power/power factor compensating equipment is estimated at electrical railway's substation in marshalling yard. As reference, real-time reactive power/power factor compensating equipment is composed by voltage source inverter and DC capacitors.