• Title/Summary/Keyword: Active seat suspension

Search Result 11, Processing Time 0.019 seconds

Development of Active Seat Suspension with 2 DOF for Agricultural Tractors(I) - Development of Control System for Active Seat Suspension - (농용트랙터를 위한 2자유도를 갖는 능동형 좌석 현가장치 개발(I) - 능동형 좌석 현가장치 제어시스템의 개발 -)

  • Yu, Ji-Hoon;Lee, Kyu-Cheol;Kim, Ki-Young;Park, Hyung-Bae;Ryu, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.315-324
    • /
    • 2009
  • Various types of vibration are transmitted to operators of agricultural tractors while working in the field. Most harmful vibration to human body is ride vibrations with low frequency ranging from 1 to 10 Hz, caused by rough terrain. These ride vibration has vertical and rotational components. This study was conducted to develop an active seat suspension system with two degrees of freedoms, enabling effectively reduce vibrations in vertical and pitch motions. Therefore, a mechanism for the active seat suspension was developed, and an electro-hydraulic servo system and a controller to drive the active seat suspension system were also developed in this study. A simulation model was developed to evaluate how the active seat suspension system effectively reduce the vibrations transmitted to the base of seat. Active seat suspension was optimized to enhance the performance using the developed simulation model. The performance of the seat suspension system was evaluated according to the test codes described in EEC78/764 in order to investigate the feasibility of application to agricultural tractors. The result showed that the developed active seat suspension system could reduce the magnitude of vertical vibration up to 80% for the input vibrations according to the test codes described in EEC78/764. The system could reduce the rotational displacement of ${\pm}\;2.5$ degrees up to 50% for the pitch vibration on the average in the frequency range of 1 to 2 Hz.

Performance Characteristics of Seat Damper Using MR Fluid (MR 유체를 이용한 운전석 댐퍼의 성능특성)

  • 남무호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.127-134
    • /
    • 2000
  • This paper presents the development of a semi-active seat damper using MR fluids and the performance analysis of seat suspension system with a MR seat damper. An annular orifice type MR seat damper is proposed for a seat suspension of a commercial vehicle. After formulating the governing equation of motion, then an appropriate size of the seat damper is designed and manufactured. Following the evaluation of field-dependant damping force characteristics, the controllability of the damping force is experimentally demonstrated in time domain by adopting PID controller. A semi-active seat suspension with the proposed MR damper is constructed and its dynamic model is established. Subsequently, vibration control capability of the semi-active suspension system is investigated by employing the sky-hook controller.

  • PDF

Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper (제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

Integration Control of Air-Cell Seat and Semi-active Suspension Using Sliding Perturbation Observer Design (슬라이딩 섭동 관측기를 이용한 에어셀과 반능동 서스펜션의 통합 제어)

  • 유기성;윤정주;이민철;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.159-169
    • /
    • 2004
  • In this study, integration control of air-cell seat and semi-active suspension is proposed to minimize the road-tyre force which can cause uncomfortable feeling to rider. The proposed integration control with sliding perturbation observer is consisted of air-cell seat control which uses the force generated by air-cell and the sky-hook control. The air-cell seat itself has been modeled as a 1 degree of freedom spring-damper system. The actual characteristics of the air-cell have been analyzed through experiments. In this paper, we introduces a new robust motion control algorithm using partial state feedback for a nonlinear system with modelling uncertainties and external disturbances. The major contribution of this work is the development and design of robust observer for the state and the perturbation. The combination skyhook controller and air-cell controller using the observer improves control performance, because of the robust routine called Sliding Observer Design for Integration Control of Air-Cell Seat and Semi-active Suspension. The simulation results show a high accuracy and a good performance.

Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation (ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가)

  • Baek, Woon-Kyung;Lee, Ji-Woong;Lee, Jong-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.

Performance Evaluation of Commercial Vehicle with MR Seat Damper (MR 시트댐퍼를 장착한 상용차의 제어성능 평가)

  • 성금길;이호근;남무호;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1048-1053
    • /
    • 2003
  • This paper proposed a MR(Magneto-rheological) seat damper for a commercial vehicle. After formulating the governing equation of motion, an appropriate size of damper is designed and manufactured. Following the equation of fie d-dependent damping force characteristics, a semi-active seat suspension installed with the proposed MR-damper is constructed and its dynamic model id established, Subsequently, vibration isolation performance of the semi-active suspension system is demonstrated by incorporating with a MRAC(Model referenced adaptive control) fer the MR Seat Damper

  • PDF

Ride Analysis of A Semi-Active Suspension Seat with Sky-Hook Control (스카이-훅 제어를 이용한 반능동 현가식 운전석의 승차감 해석)

  • Kang, T.H.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.33-39
    • /
    • 2002
  • Commercial vehicles are mostly subjected to relatively rougher ground environment than passenger vehicles. Many driver's seats of commercial vehicles have suspension system with spring and dampers. Then, impact or vibrative forces transmitted from the vehicle to the driver can be attenuated. This study deals with a ride evaluation method using sky-hook control algorithm for the suspension dampers. Vibration amplitude transmissibilities were compared between passive dampers and semi-active dampers with sky-hook control method.

  • PDF

A Semi-Active Suspension Using ER Fluids for a Commercial Vehicle Seat (ER 유체를 이용한 상용차 운전석의 반능동형 현가 장치)

  • 최정환;남무호;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.394-399
    • /
    • 1997
  • This paper presents a new concept of a semi-active suspension system for a commercial vehicle seat. The proposed suspension system features an ER(electro-rheological) damper which can produce continuously tunable damping forces by control electric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system. A sliding mode controller is then designed on the basis of the hyper-plane sliding mode scheme. The effectiveness of the proposed control system is evaluated by investigating control performance for vibration isolation.

  • PDF

The Design of Neuro Controlled Active Suspension (신경회로망을 이용한 능동형 현가장치 제어기 설계)

  • 오정철;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.414-419
    • /
    • 1994
  • In recent years, there has been an increasing intest in control of active automotive suspension systems with a goal of improving the ride comfort and safety. Many approaches for these purposes have used linearized models of the suspension's dynamics, allowing the use of linear control theory. However, the linearized model does not well descriibe the actual system behavior which is inherently nonlinear. The object of this study is to develop a neuro controlled active suspension for the ride quality improvement. After obtaining active control law using optimal control theory, we use the artificial neural network to train the neuro controller to learn the relation of road input and control force. Form the numerical results, we found that back propagation learning does show good pattern matching and vertical acceleration of the driver's seat and sprung mass.

  • PDF

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.