• Title/Summary/Keyword: Active load control

Search Result 454, Processing Time 0.027 seconds

Active load control for wind turbine blades using trailing edge flap

  • Lee, Jong-Won;Kim, Joong-Kwan;Han, Jae-Hung;Shin, Hyung-Kee
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.263-278
    • /
    • 2013
  • The fatigue load of a turbine blade has become more important because the size of commercial wind turbines has increased dramatically in the past 30 years. The reduction of the fatigue load can result in an increase in operational efficiency. This paper numerically investigates the load reduction of large wind turbine blades using active aerodynamic load control devices, namely trailing edge flaps. The PD and LQG controllers are used to determine the trailing edge flap angle; the difference between the root bending moment and its mean value during turbulent wind conditions is used as the error signal of the controllers. By numerically analyzing the effect of the trailing edge flaps on the wind turbines, a reduction of 30-50% in the standard deviation of the root bending moment was achieved. This result implies a reduction in the fatigue damage on the wind turbines, which allows the turbine blade lengths to be increased without exceeding the designed fatigue damage limit.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

Direct Load Control Using Active Database (능동 데이터베이스를 이용한 직접부하제어)

  • Choi, Sang-Yule;Kim, Hak-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.107-115
    • /
    • 2006
  • The existing DLC system functionally has two defects. One is it has to be controlled by operators whenever customer's portion of loads are increased more than predefined objected load. Therefore, it may be possible for propagating uncontrolled loads if operators make a mistake. The other one is that currently used DLC algorithm is usually focused on ON/OFF load control not concerning about reliving participated customer's inconvenience. Therefore, that is a major obstacle to attract customer participating in demand response program. This paper represents direct load control system using active database. By using active database, DLC system can control customer's load effectively without intervening of operator. And by using dynamic programming based on the order of priority for DLC algorithm, it is possible to maximize participating customer's satisfaction.

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

A New Control Strategy of The Active Power Filter (능동 전력 필터의 새로운 제어 방법)

  • Yo, Wan-Sik;Kim, Nam-Jeung;Cho, Kyu-Min;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1174-1176
    • /
    • 2000
  • This paper presents a new control strategy of the active power filter to compensate the fundamental and high order reactive power. Using the proposed control strategy, the calculation of active and reactive power of the load is not required. So the system configurations and the controller can be constructed very simply. To decrease the load of active power filter, the LC passive filter bank can be used without any additional strategy. In this paper, the algorithm of the proposed new control strategy is discussed and the experimental results are shown.

  • PDF

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

An Active Output Filter with a Novel Control Strategy for Passive Output Filter Reduction

  • Choi, Kyusik;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1036-1045
    • /
    • 2016
  • This paper presents a novel control strategy for passive output filter reduction using an active output filter. The proposed method achieves the dual-function of regulating the output voltage ripple and output voltage variation during load transients. The novel control strategy allows traditional simple voltage controllers to be used, without requiring the expensive current sensors and complex controllers used in conventional approaches. The proposed method is verified with results from a 125-W forward converter.

Using Voltage Control Active Power Filter, Power Factor Improvement and Harmonics Reduction for Nonlinear Load (전압제어형 능동전력필터를 이용한 비선형부하의 고조파저감 및 역류개선)

  • 김병진;문학룡;송양희;임병국;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.403-408
    • /
    • 2000
  • In this paper, voltage control APF(Active Power Filter) is introduced to improve power factor and reduce harmonics generated from nonlinear load. The voltage controlled APF which is consisted of inverter and passive filter operates with nonlinear load simultaneously. Real power supplies from main power to load and reactive power provides from APF to load. According to the results o experiment and simulation, it is proved that the proposed system has the performance of improving power factor and reducing harmonics.

  • PDF

Optimal Coordination of Intermittent Distributed Generation with Probabilistic Power Flow

  • Xing, Haijun;Cheng, Haozhong;Zhang, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2211-2220
    • /
    • 2015
  • This paper analyzes multiple active management (AM) techniques of active distribution network (ADN), and proposes an optimal coordination model of intermittent distributed generation (IDG) accommodation considering the timing characteristic of load and IDG. The objective of the model is to maximize the daily amount of IDG accommodation under the uncertainties of IDG and load. Various active management techniques such as IDG curtailment, on-load tap changer (OLTC) tap adjusting, voltage regulator (VR) tap adjusting, shunt capacitors compensation and so on are fully considered. Genetic algorithm and Primal-Dual Interior Point Method (PDIPM) is used for the model solving. Point estimate method is used to simulate the uncertainties. Different scenarios are selected for the IDG accommodation capability investigation under different active management schemes. Finally a modified IEEE 123 case is used to testify the proposed accommodation model, the results show that the active management can largely increase the IDG accommodation and penetration.