• Title/Summary/Keyword: Active circuit

Search Result 1,002, Processing Time 0.025 seconds

Active Short Circuit Control Method to Reduce Overcurrent and Oscillation Current in PMSM (영구자석 동기모터 진동 및 과전류 저감을 위한 능동단락회로 제어 기법)

  • Choi, Jong-Won;Kim, Yoon-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • This study proposes the mitigation method for overcurrent and oscillation motor current in an active short-circuit operation. This operation is attracting attention as the safe state of electric vehicle traction inverters. However, the active short-circuit operation generates oscillation and overcurrent of motor currents during a transient state. The proposed method uses two different safe states in PMSM, such as active short circuit and freewheeling. The active short circuit is used for safe state in a steady state. To reduce the overshoot and oscillation, a freewheeling state is injected between active short-circuit operation by comparing the motor phase current with an analytically calculated steady-state motor current. Freewheeling state is only used in a transient state. The performance is demonstrated through simulations and experimental results. The peak current of the motor was reduced from 52 A to 40 A, and oscillation time was reduced.

LNA Design Uses Active and Passive Biasing Circuit to Achieve Simultaneous Low Input VSWR and Low Noise (낮은 입력 정재파비와 잡음을 갖는 수동 및 능동 바이어스를 사용한 저잡음증폭기에 관한 연구)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1263-1268
    • /
    • 2008
  • In this paper, the low noise power amplifier for GaAs FET ATF-10136 is designed and fabricated with active bias circuit and self bias circuit. To supply most suitable voltage and current, active bias circuit is designed. Active biasing offers the advantage that variations in the pinch-off voltage($V_p$) and saturated drain current($I_{DSS}$) will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets a gate-source voltage($V_{gs}$) for the desired drain voltage and drain current. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA, suitable for input stage matching and gate source bias. The LNA is fabricated on FR-4 substrate with active and self bias circuit, and integrated in aluminum housing. As a results, the characteristics of the active and self bias circuit LNA implemented more than 13 dB and 14 dB in gain, lower than 1 dB and 1.1 dB in noise figure, 1.7 and 1.8 input VSWR at normalized frequency $1.4{\sim}1.6$, respectively.

Low Noise and High Linearity GaAs LNA MMIC with Novel Active Bias Circuit for LTE Applications

  • Ryu, Keun-Kwan;Kim, Yong-Hwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • In this work, we demonstrated a low noise and high linearity low noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) with novel active bias circuit for LTE applications. The device technology used in this work relies on a process involving a $0.25-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT). The LNA MMIC with a novel active bias circuit has a small signal gain of $19.7{\pm}1.5dB$ and output third order intercept point (OIP3) of 38-39 dBm in the frequency range 1.75-2.65 GHz. The noise figure (NF) is less than 0.58 dB over the full bandwidth. Compared with the characteristics of the LNA MMIC without using the novel active bias circuit, the OIP3 is improved about 2-3 dBm. The small signal gain and NF showed no significant change after using the active bias circuit. The novel active bias circuit indeed improves the linearity performance of the LNA MMIC without degradation.

Design of a Low-cost Active Dry Electrode Module for Single Channel EEG Recording

  • Byeon Jong-Gil;Jin Kyung-Soo;Park Byoung-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • This paper presents a design of 1-channel active dry electrode module for EEG from one's forehead. The IA(instrumentation amplifier) circuit inside the module is based on the configuration sown on the paper MettingVanRijn et al. We analyze the IA circuit to find out the related equation, and then compare its simulated characteristic with the result obtained from the real active dry electrode circuit. With the active dry electrode and the wet(Ag/AgCI) electrode connected to the separated analog processing module on one's forehead at the same time, their real time and FFT outputs of EEG are examined for comparison. The active dry electrode module has advantages over the wet electrode and its analog processing module: 1) The size of the analog processing circuit of the active dry electrode module is smaller than that of existing EEG analog processing module; 2) the total cost required to make the proposed analog processing circuit is much lower than that of the existing circuit, since the designed circuit needs smaller parts; 3) the electrical characteristic is comparable to the general EEG analog processing module even if the designed module has simpler circuit configuration.

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Characteristics of the Sinusoidal Active Oscillator Circuit for Integrated Circuit Realization(II) (IC 실현에 적합한 정현파 능동 발진기의 회로 및 특성에 관한 연구(II))

  • Park, Chong-Yeun;Lee, Weon-Gun;Sohn, Tae-Ho
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.43-53
    • /
    • 1991
  • Two kinds of simple active oscillators are proposed and analyzed assuming that operational amplifier has two-poles frequency characteristics. The first circuit is composed of one operational amplifier, one resistor and one grounded capacitor. The second oscillator is realized with one operational amplifier and three resitors. Proposed oscillators have the low sensitivity of the oscillation frequency for little variations of the passive element values. By the experimental results obtained with Op-Amp. ${\mu}A741$, the simple oscillators can be useful for the frequency range $1.25 KHz{\leq}f_{01}{\leq}40KHz$ for the active-RC type or $45.45 KHz{\leq}f_{02}{\leq}400KHz$ for the active-R oscillator, and it is shown to transform the active-R oscillator circuit into the voltage controlled type. Therefore, two kinds of oscillator circuit are attractive for the IC realization, because they have one operational amplifier, one resistor and one grounded capacitor, or three resistors.

  • PDF

Analysis of a Symmetric Active Cell Balancer with a Multi-winding Transformer

  • Jeon, Seonwoo;Kim, Myungchin;Bae, Sungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1812-1820
    • /
    • 2017
  • This paper analyzes a symmetric active cell balancer for a battery management system. The considered cell balancer uses a forward converter in which the circuit structure is symmetric. This cell-balancing method uses fewer switches and is simpler than the previously proposed active cell-balancing circuits. Active power switches of this cell-balancing circuit operate simultaneously with the same pulse width modulation signals. Therefore, this cell-balancing circuit requires less time to be balanced than a previous bidirectional-forward-converter-based cell balancer. This paper analyzes the operational principles and modes of this cell balancer with computer-based circuit simulation results as well as experimental results in which each unbalanced cell is equalized with this cell balancer. The maximum power transfer efficiency of the investigated cell balancer was 87.5% from the experimental results. In addition to the experimental and analytical results, this paper presents the performance of this symmetric active cell-balancing method.

Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck;Kwon You Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.77-86
    • /
    • 2005
  • This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

A Study on the Combining Circuit of New Active EMI Filter (새로운 능동EMI필터의 결합회로에 관한 연구)

  • Choi, Min-Whan;Shin, Dong-Seok;Lee, Dong-Ho;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.78-89
    • /
    • 2015
  • Conventional EMI filters have tried to use an active EMI filter as a series by the series connection of two EMI filters for CM and DM noise. However, the proposed filter is formed into one circuit by using the active EMI filter which is able to filter CM and DM noise components together. As a result, the active EMI filter showed the outstanding quality in mass and volume under 50% and electric characteristics have been compared to the passive EMI filter in approximately 150kHz~10MHz. Furthermore, the proposed circuit has simple circuit components by comparing with the series EMI filters, and electrical characteristics are similar. The noise have been attenuated to maximum 20dBuV.

Design of Active Bandpass Filter Considering The Amplitude Flatness of Passband (대역 내 진폭 특성의 평탄도를 고려한 4단 능동 대역통과 여파기 설계)

  • Bang, Inn-Dae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.638-648
    • /
    • 2003
  • An active capacitance circuit is analyzed in depth and its application to active RF BPF with low noise figure is discussed. The characteristics of the active capacitance circuit made of FET[1] exhibits negative resistance and conventional capacitance, which is easily controlled. However, it is difficult to make the negative resistance adequate in the designated frequency range due to the lack of detailed analysis, which could make an active circuit unstable as the frequency is going higher or lower. In this paper, we analyzed the negative resistance characteristics of active capacitance circuits and also presented the method that the flatness of passband can be controlled. Finally we have designed a 4-stage active BPE, which results in bandwidth of 100 MHz, 0,04 dB insertion loss, 0.2 dB ripple, and noise figure of 2.4 dB at 1.75 GHz band.

  • PDF